105=15+90.
1)Строим прямоуг. треуг-к АОС , с углом С 60 градусов
(строим 2 перпенд.прямых а и б, на а от О - точки пересечения прямых - откладываем ОА. От точки А окладываем на прямую а дальше это же расстояние - АД. Теперь из точки А строим окружность с радиусом ОД, что равно 2 ОА.Точку пересечения окружности и прямой б назовём С. В прямоугольном треугольнике АОС угол А =60 градусов, С=30 градусов). отрезок АС назовём с.
2)Проводим биссектрису угла С.
3)строим к ней перпендикуляр д через точку С. берём угол этого перпендикуляра, в котором внутри лежит точка О. Прибавляем к нему угол дс. 90+15(т.к. угол АСО 30 градусов, строили биссектрису) =105.
36:3=12.
Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°.
Вычислим диаметр окружности:
d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3.
Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а.
По теореме Пифагора: a²+a²=d², 2a²=(8√3)².
2a²=64·3,
a²=32·3=16·2·3,
a=√16·6=4√6.
a=4√6.