36 см²
Объяснение:
На рисунке подобные треугольники. Они подобны по второму признаку (Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.)
Из пропорциональности сторон можно легко вычислить коэффициент подобия:
9/3 = 3
Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Т.е. площадь большого треугольника в 3² = 9 раз больше площади маленького. Соответственно она равна:
S = 4 * 9 = 36 см²
остроугольный и равнобедренный.
Объяснение:
Если боковые рёбра пирамиды составляют равные углы с плоскостью основания, то основанием высоты пирамиды является центр окружности описанной около многоугольника из основания.
Центр окружности описанной около треугольника лежит внутри треугольника, если он остроугольный.
Так же этот центр лежит на пересечении серединных перпендикуляров к сторонам треугольника. Если центр описанной окружности лежит на одной высоте треугольника, то эта высота лежит на серединном перпендикуляре. А значит высота одновременно является и медианой. Тогда треугольник равнобедренный.