М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bcvfb
bcvfb
15.05.2021 16:33 •  Геометрия

Решите ! 1)из вершины прямого угла с треугольника авс проведена высота ср. радиус окружности, вписанной в треугольник вср, равен 8, тангенс угла вас равен 3/4. найдите радиус вписанной окружности треугольника авс 2)из вершины прямого угла с треугольника авс проведена высота ср. радиус окружности, вписанной в треугольник аср равен 12 см, тангенс угла авс равен 2,4. найдите радиус вписанной окружности треугольника авс

👇
Ответ:
322pussy322
322pussy322
15.05.2021

Поскольку тангенс угла ВАС равен 3/4, треугольник АВС - "египетский", то есть подобный треугольнику со сторонами 3,4,5. 

Высота к гипотенузе СР делит треугольник АВС на два, ему же подобных (из за равенства острых углов), то есть треугольник ВСР тоже "египетский".

Следовательно, его стороны можно представить, как 3х, 4х, 5х, и радиус вписанной окружности равен

r = (3х + 4х - 5х)/2 = х;

То есть x = 8, и стороны ВСР таковы 24, 32, 40.

На самом деле, ответ уже найден, поскольку соотношение r = (3х + 4х - 5х)/2 = х; связывает коэффициент подобия с радиусом (они просто равны, поскольку  у  "чисто" египетсткого треугольника 3,4,5 r = 1).

В данном случае ВС = 40, и она соответствует стороне 3, то есть r = 40/3.

4,4(27 оценок)
Открыть все ответы
Ответ:
zalina163
zalina163
15.05.2021
Полное условие задачи:
Один из острых углов прямоугольного треугольника равен 38°. Найдите острый угол между гипотенузой и биссектрисой прямого угла.

Пусть в треугольнике АВС ∠С = 90°, СМ - биссектриса.
Рассмотрим ΔАСМ:
∠САМ = 38° по условию,
∠АСМ = 90° / 2 = 45° так как СМ биссектриса.
∠ВМС = ∠САМ + ∠АСМ = 38° + 45° = 83° так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
Углом между прямыми считается меньший из образовавшихся углов, значит угол между гипотенузой и биссектрисой прямого угла 83°.
4,4(14 оценок)
Ответ:
MariaUralova
MariaUralova
15.05.2021
Полное условие задачи:
Один из острых углов прямоугольного треугольника равен 38°. Найдите острый угол между гипотенузой и биссектрисой прямого угла.

Пусть в треугольнике АВС ∠С = 90°, СМ - биссектриса.
Рассмотрим ΔАСМ:
∠САМ = 38° по условию,
∠АСМ = 90° / 2 = 45° так как СМ биссектриса.
∠ВМС = ∠САМ + ∠АСМ = 38° + 45° = 83° так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
Углом между прямыми считается меньший из образовавшихся углов, значит угол между гипотенузой и биссектрисой прямого угла 83°.
4,6(87 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ