Впрямом параллелепипеде стороны основания равны a и b острый угол между ними равен 60 градусов большая диагональ основания равна меньшей диагонали параллелепипеда найдите боковую поверхность параллелепипеда
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:4:11. Пусть коэффициент отношения дуг равен k Тогда градусная мера окружности содержит 3k+4k+11k=18k градусов 18k=360° k=20° Соединим центр окружности с вершинами треугольника АВС ∠ АОВ=3k=3*20°=60°, ∠ ВОС=4k=4*20°=80° ∠ АОС=11k=11*20°=220° Углы треугольника АВС - вписанные и равны половине соответственного каждому центрального угла. Меньшая сторона треугольника лежит против меньшего угла. Меньший угол треугольника равен половине меньшего центрального угла: АОВ:2=60:2=30°. Треугольник АОВ равнобедренный ( АО=ВО - радиусы), но и равносторонний, т.к. углы при АВ равны (180-60):2=60° Следовательно, радиус окружности равен АО=ВО=АВ=14
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:4:11. Пусть коэффициент отношения дуг равен k Тогда градусная мера окружности содержит 3k+4k+11k=18k градусов 18k=360° k=20° Соединим центр окружности с вершинами треугольника АВС ∠ АОВ=3k=3*20°=60°, ∠ ВОС=4k=4*20°=80° ∠ АОС=11k=11*20°=220° Углы треугольника АВС - вписанные и равны половине соответственного каждому центрального угла. Меньшая сторона треугольника лежит против меньшего угла. Меньший угол треугольника равен половине меньшего центрального угла: АОВ:2=60:2=30°. Треугольник АОВ равнобедренный ( АО=ВО - радиусы), но и равносторонний, т.к. углы при АВ равны (180-60):2=60° Следовательно, радиус окружности равен АО=ВО=АВ=14
AC=B1D;