М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
whiteandblackca
whiteandblackca
18.02.2021 10:00 •  Геометрия

788мм это ск., в см и в мм​

👇
Ответ:
PolinaRyan
PolinaRyan
18.02.2021

78,8 см

Объяснение:

Вторая единица в чем ? В мм ? Или в метрах ?

4,8(51 оценок)
Ответ:
ErikLusenko
ErikLusenko
18.02.2021

Объяснение:

788мм=78,8см

788мм=0,788м

4,4(83 оценок)
Открыть все ответы
Ответ:
TanyaVasutina
TanyaVasutina
18.02.2021

1. 60

2. АВ = 70°, АС = ВС = 145°.

Объяснение:

1.

Дано:

Окружность (О; r)

∠OBA = 30°

CA — касательная

Найти:

∠BAC — ?

1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).

У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.

2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.

3) ∠BAC = ∠OAC - ∠OAB.

∠BAC = 90° - 30° = 60°.

2 Задача

Если О - центр окружности, то угол АОВ - центральный.

Центральный угол равен дуге, на которую опирается. Отсюда, дуга АВ = 70°.

Угол САВ = углу СВА, тогда дуга АС = дуге ВС = (360° - 70°) / 2 = 290° / 2 = 145°.

4,8(23 оценок)
Ответ:
гаагмгмг
гаагмгмг
18.02.2021

Назовем прямую, проходящую через середины противолежащих сторон четырехугольника, его средней линией.

Рассмотрим геометрическое место точек D' таких, что прямая l, совпадающая с (EF) является средней линией четырехугольника ABCD'. Этим ГМТ является прямая l' – образ прямой l при гомотетии с центром в точке A и коэффициентом 2 (

). Так как l' || l, то для любой точки D'∈l' отрезки BD и BD' делятся прямой l в одном и том же отношении. Так как у четырехугольников ABCD и ABCD' диагональ AС и средняя линия l — общие, а диагонали BD и BD' делятся прямой l в одном и том же отношении, то утверждение задачи достаточно доказать хотя бы для одного из четырехугольников ABCD'. Но это утверждение очевидно для случая, когда (AD') || (BC), то есть, когда ABCD' — трапеция.

4,4(31 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ