1) Биссектриса угла прямоугольника делит угол в 90° пополам, то есть по 45°. Поэтому она отсекает на большей стороне отрезок, равный меньшей стороне прямоугольника. Обозначим стороны прямоугольника как 3х и 4х. Сумма двух сторон равна половине периметра, то есть: 3х+4х = 42/2 = 21 см. 7х = 21 см. х = 21/7 = 3 см. ответ: меньшая сторона равна 3х = 3*3 = 9 см.
2) Обозначим острый угол параллелограмма α. Тупой угол равен 180-α, половина его равна (180-α)/2 = 90-(α/2). Угол между боковой стороной и высотой равен 90-α. По заданию угол в 20° равен (90-(α/2)) - (90-α) = α - (α/2) = α/2. ответ: α = 2*20 = 40°.
1)Пусть АВС-равнобедренный треугольник,АС-основание=12 см.
АВ=ВС=10 см
Проведем высоту ВН
Так как треугольник равнобедренный,то высота,проведенная к основанию,является и медианой,и биссектрисой.
Так как ВН-высота,то образуется прямоугольный треугольник АВН,причем из-за того,что ВН ещё и медиана,то АН=НС=12/2=6см.
Теперь по теореме Пифагора находим катет ВН
ВН=корень из(АВ^2-АН^2)
ВН=корень из(64)
ВН=8см
Sтреугольника АВС=(ВН*АС)/2
S=(8*12)/2
S=48 кв. см
ответ:48 кв.см.
2)параллелограмм ABCD
Проведём из угла В на AD высоту BK.
∆ABK-прямоугольный. ےА=30°
Следовательно BK=AB:2, как катет, лежащий против угла 30°
AB=12. Тогда BK=6; S=16×6=96 кв.см.
ответ:96 кв.см.
3)Дано:
АВСD-трапеция,
АВ=СD=13 см.
АD=20см
ВС=10см
Найти:S
Проводим высоту ВН,так как трапеция равнобедренная,то АН будет равен (20-10)/2=5 см
Образовался прямоугольный треугольник АВН,находим катет(высоту) ВН
ВН=корень из(АВ^2-AH^2)
ВН=корень из(169-25)
ВН=12 см.
S=((АD+ВС)/2)*ВН
S((20+10)/2)*12=180 кв.см.
ответ:180 кв.см
Подробнее - на -
Объяснение: