Формула медианы треугольника
m=0,5*√(2а²+2b²-c²), где а и b- боковые стороны, с- сторона, к которой медиана проведена.
Произведя вычисления, получим длину медианы 5 см.
Но, обратив внимание на отношение сторон 6:8:10=3:4:5, увидим, что данный треугольник - египетский, следовательно, прямоугольный с прямым углом В, АС в нем - гипотенуза.
Медиана прямоугольного треугольника из прямого угла равна половине гипотенузы.
m=10:2=5 см
Проверка:
АВ+ВМ+МА=6+5+5=16 см ( периметр треугольника АВМ)
Ещё один
ВМ - медиана и делит сторону АС пополам.
СМ=АМ=10:2=5 ( см)
Р Δ АВМ=16 см
Р Δ АВМ=ВМ+АМ+АВ
16= ВМ+5+6
ВМ=16-11=5 ( см)
Объяснение:
теперь разбираемся с отношением r:R = 4:13
4:13 - это части, которые приходятся на r и R . Одну часть примем за х, тогда r = 4x и R = 13x. Тогда гипотенуза = 26 х
Теперь считаем, что у нас есть 3 данных: r, R и гипотенуза АС ( АС - диаметр описанной окружности)
Теперь разбираемся с точками касания вписанной окружности и треугольника. Давай с буквами разберёмся.ΔАВС, АС - гипотенуза, АВ и ВС - катеты.На АВ точка касания М, на ВС точка касания N, на АС точка касания К. Рассматриваем отрезки касательных. ВМ = ВN = r = 4x , АМ = АК = y,
NС = КС = 26x - y
теперь выразим катеты: АВ = 4х + у, ВС = 4х + 26х - у = 30х - у.
Теперь пишем т. Пифагора:
(4х + у)² + ( 30х - у)² = (26у)²
Упрощаем
у² - 26 у + 120 х² = 0
Решаем относительно у
у = 13х +-√(169х² - 120х²) = 13х +-7х
у1 = 20 х у2 = 6х
а) у1 = 20х
АВ = 4х + у = 24х
ВС = 30х - у = 10х
Теперь ищем отношение катетов: ВС:АВ= 10х : 24х = 5:12
б) у2 = 6х
АВ = 4х + у = 10х
ВС = 30х -у = 24х
Ищем отношение катетов: АВ:ВС=10х : 24Х = 5:12