Сходственными сторонами двух подобных многоугольников называются любые две их стороны, одна из которых переходит в другую при преобразования подобия, переводящем один многоугольник в другой. Например, сходственные стороны подобных треугольников – это стороны, лежащие напротив их равных углов.
Треугольники АВС и АМР подобны, так как <В=<P, <C=<M (углы соответственные при параллельных прямых МР и ВС и секущих АВ и АС соответственно). Коэффициент подобия - это отношение соответственных сторон, или высот, или медиан, или периметров этих треугольников. Значит из подобия треугольников имеем: АО/АН = k - коэффициент подобия. Медианы треугольника делятся в точке пересечения в отношении 2:1 считая от вершины (свойство). Значит АО/ОН=2:1. Отсюда ОН=АО:2=24:2=12см. АН=АО+ОН=36см. Тогда АО/АН=24/36=2/3 = k (коэффициент подобия). Из подобия треугольников АВС и АМР: МР равна ВС*k = 32*(2/3)=21и1/3. ответ: MP=21и1/3.
Пусть исходная трапеция - АВСД, Высота трапеции Н=2h, где h - высота каждой меньшей трапеции. ВС=а, АД=b МК - средняя линия исходной трапеции и равна (а+b):2 МК - меньшее основание трапеции АМКД и большее основание трапеции МВСК S1- площадь трапеции МВСК и равна произведению её высоты h на полусумму её оснований: S1=h*(ВС+МК):2 S1=h*{а+(а+b):2}:2)=h*(3a+b):4 S2 - площадь трапеции АМКД и равна произведению её высоты h на полусумму её оснований: S2=h*(AD+МК):2 S2=h*{b+(b+a):2}:2=h*(a+3b):4 Разность между площадями этих трапеций S2-S1=h*(a+3b):4-h*(3a+b):4= =(ha+3hb-3ha-hb):4=2h(b-a):4 2h=H S2-S1=H(b-a):4
Сходственными сторонами двух подобных многоугольников называются любые две их стороны, одна из которых переходит в другую при преобразования подобия, переводящем один многоугольник в другой. Например, сходственные стороны подобных треугольников – это стороны, лежащие напротив их равных углов.