в прямой треугольной призме стороны основания 10см, 17см и 21см, высота призмы боковое ребро равна 18 см. Найти площадь полной призмы поверхности призмы
Вокруг прямоуг.треугольника опишем окружность. По т.о том, что прямой угол всегда опирается на диаметр имеем, что вершина прямого угла лежит на окружности, а гипотенуза является диаметром. Радиус окружности равен 12/2=6 см. Для нахождения площади высоту на гипотенузу опускаем из вершины прямого угла, поэтому высота с одной стороны может быть очень маленькой - близкой к нулю, а с другой стороны - максимальное значение она принимает, когда равна радиусу окружности =6, тогда площадь треугольника меняется от нуля, не включая ноль, до 1/2*6*12=36. ответ: (0; 36].
1) 1м.
2) 21 кв. ед.
3) 34.25 кв. ед.
Объяснение:
Дано. Стороны грядки, имеющей форму прямоугольника, равны 2,5 м и 0,4м.
Найти периметр грядки, равновеликой данной и имеющей форму квадрата.
Решение.
Равновеликие прямоугольник и квадрат у которых равные площади.
Найдем площадь прямоугольника
S=ab = 2.5 * 0.4 = 1 м².
S квадрата = S прямоугольника
S квадрата =a²; a²=1;
a=±1; (-1 - не соответствует условию.)
а=1 м.
Равновеликим прямоугольнику со сторонами 2,5 м и 0,4 м является квадрат со стороной 1 м.
***
2) Дано. ABCD - трапеция. AB=6; BC=4; AD=10; угол A=30*.
Найти площадь.
Решение.
Проведем высоту ВЕ. Получили треугольник АВЕ, в котором угол А=30* АВ=6 - гипотенуза. АЕ и ВЕ - катеты, а ВЕ=h - еще и высота трапеции.
BE =h = AB* sin 30*=6*1/2=3.
Площадь S=h(a+b)/2 = 3*(10+4)/2=3*14/2=21 кв. ед.
***
3) Дано. Δ ACD, у которого ∠А=30°; ∠ACB=60°; внешний угол D = 135°; BC=5 - высота. Найти площадь.
Решение.
В Δ BCD внутренний угол В = 180°-135° = 45°. Следовательно Δ BCD - равнобедренный ВС=BD = 5.
Из Δ АВС АВ = ВС/ tg30° = 5/0.577 = 8,7.
AD = 8,7 + 5=13,7.
Площадь S=1/2*AD*BC = 1/2* 13.7*5 = 34.25 кв. ед.