Искомая площадь равна половине произведения высоты пирамиды на основание треугольника со сторонами апофема, ребро, и основанием - высота треугольника в основании. Половину стороны основания найдем по теореме Пифагора. х= √(11²-7²)=√121-49=6√2 Cторона основания равна 2*6√2=12√2 Высота правильного треугольника h равна h=а√3:2=12√2*√3:2=6√6
Основание высоты пирамиды находится на расстоянии 1/3 от основания апофемы, так как центр ее - на пересечении медиан ( они пересекаются в отношении 2:1 от вершины) и это расстояние равно 2√6 Найдем высоту пирамиды. h=√49-24=√25=5 Площадь сечения S=(5*6√6):2=15√6 см²
Теорема . три высоты любого треугольника пересекаются в одной точке. доказательство: пусть abc - данный треугольник . пусть прямые, содержащие высоты ap и bq треугольника abc пересекаются в точке o. проведем через точку a прямую, параллельную отрезку bc, через точку b прямую, параллельную отрезку ac, а через точку c - прямую, параллельную отрезку ab. все эти прямые попарно пересекаются. пусть точка пересечения прямых, параллельных сторонам ac и bc - точка m, точка пересечения прямых, параллельных сторонам ab и bc - точка l, а прямых, параллельным ab и ac - точка k. точки klm не лежат на одной прямой, (иначе бы прямая ml совпадала бы с прямой mk, а значит, прямая bc была бы параллельна прямой ac, или совпадала бы с ней, то есть точки a, b и c лежали бы на одной прямой, что противоречит определению треугольника) . итак, точки k, l, m составляют треугольник. ma параллельно bc, и mb параллельно ac по построению. а значит, четырёхугольник macb - параллелограмм. следовательно, ma = bc, mb = ac. аналогично al = bc = ma, bk = ac = mb, kc = ab = cl. значит, ap и bq - серединные перпендикуляры к сторонам треугольника klm. они пересекаются в точке o, а значит, co - тоже срединный перпендикуляр. co перпендикулярно kl, kl параллельно ab, а значит co перпендикулярно ab. пусть r - точка пересечения ab и cq. тогда cr перпендикулярно ab, то есть cr - это высота треугольника abc. точка o принадлежит всем прямым, содержащим высоты треугольника abc. значит, прямые, содержащие высоты этого треугольника пересекаются в одной точке. что и требовалось доказать.
Искомая площадь равна половине произведения высоты пирамиды на основание треугольника со сторонами апофема, ребро, и основанием - высота треугольника в основании.
Половину стороны основания найдем по теореме Пифагора.
х= √(11²-7²)=√121-49=6√2
Cторона основания равна
2*6√2=12√2
Высота правильного треугольника h равна
h=а√3:2=12√2*√3:2=6√6
Основание высоты пирамиды находится на расстоянии 1/3 от основания апофемы, так как центр ее - на пересечении медиан ( они пересекаются в отношении 2:1 от вершины) и это расстояние равно 2√6
Найдем высоту пирамиды.
h=√49-24=√25=5
Площадь сечения
S=(5*6√6):2=15√6 см²