Две стороны треугольника равны 3 и 5. Известно, что окружность, проходящая через середины этих сторон и их общую вершину, касается третьей стороны треугольника. Найдите третью сторону.
––––––––––––––––
АН и СН - касательные к окружности.
АВ - секущая, АК - её внешняя часть.
АВ=3, АК=0,5 АВ=1,5
СВ - секущая, СМ - её внешняя часть
СВ=5, СМ=СВ:2=2,5
Квадрат касательной равен произведению секущей на её внешнюю часть. ⇒
Поместим начало координат в вершину прямого угла, а оси направим по его сторонам. Пусть конец отрезка, который движется по оси ОХ, имеет координаты (t,0). Тогда, если длина отрезка равна L, то второй конец, который движется по оси ОY, будет иметь координаты . Тогда абсцисса середины отрезка x=t/2, а ордината середины . Отсюда t=2x. Подставляем это в y и получаем, что x и y связаны соотношением . Т.е. середина отрезка описывает дугу окружности с центром в вершине прямого угла, и радиусом в половину длины отрезка.
Две стороны треугольника равны 3 и 5. Известно, что окружность, проходящая через середины этих сторон и их общую вершину, касается третьей стороны треугольника. Найдите третью сторону.
––––––––––––––––
АН и СН - касательные к окружности.
АВ - секущая, АК - её внешняя часть.
АВ=3, АК=0,5 АВ=1,5
СВ - секущая, СМ - её внешняя часть
СВ=5, СМ=СВ:2=2,5
Квадрат касательной равен произведению секущей на её внешнюю часть. ⇒
АН ²=АВ•AK=3*1,5=4,5=450/100
АН=√4,5=√(450/100)=√(9*25*2:100)=(3•5√2)/10=1,5√2
СН²=СВ•CM=5*2,5=1250/100
CH=√(25•25•2/100)=(25√2)/10=2,5√2
АС=АН+СН=1,5√2+2,5√2=4√2