1.Продолжите предложение. А) Центральный угол-это угол , вершина ,которого в центре окружности , а стороны пересекают окружность
Б) Угол между касательной и хордой равен равен половине дуги, которую стягивает данная хорда.
2.Постройте окружность, обозначьте её центр точкой О и постройте вписанный центральный углы, опирающиеся на дугу АВ. (в приложении)
3.А) Постройте центральный угол 120 градусов и дополните рисунок вписанным углом, опирающимся на эту дугу и найдите градусную меру вписанного угла. ( в приложении)
Б) Постройте острый вписанный в окружность угол и найдите градусную меру центрального угла, опирающегося на эту дугу. ( в приложении)
4.Дана окружность с центром в точке О, АN-касательная, СВ и СА- хорды. Известно, что дуга АС равна 100 градусам, дуга АВ относится к дуге ВС как 2 к3. Дуги АВ и ВС меньше полуокружности.
Найдите: а) углы САN, АОВ, АСВ, СВО; б)дуги АВ и СВ.
Решение.
а)∠САN=1/2*100°=50° по правилу п.1Б;
б)Пусть одна часть дуги х°, тогда из условия ∪АВ:∪ВС=2:3 ,
получаем :∪АВ=2х ,∪ВС=3х.
Вся окружность 360°⇒2х+3х+100=360 или 5х=260 или х=52°.
Значит ∪АВ=104° ,∪ВС=156°.
а)∠АОВ=∪АВ , как центральный⇒ ∠АОВ=104°,
∠АСВ=1/2*∪АВ , как вписанный ⇒∠АСВ=52°,
∠СВО=?. Рассмотрим ΔСВО-равнобедренный, т.к. ОВ=ОС как радиусы.∠ВОС=∪ВС=156°. Значит ∠ВСО=∠СВО=(180°-156°):2=12°
Очевидно, что высота трапеции h=2r=2*3=6 Площадь трапеции S=(a+b)*h/2 60=(a+b)*6/2 (a+b)/2=10 (1) Треугольники MOC и OCE прямоугольные с общей гипотенузой. Следовательно, они равны между собой CE=MC=a/2 Треугольники OED и OND прямоугольные с общей гипотенузой. Следовательно, они равны между собой ED=ND=b/2 CD=CE+ED=a/2+b/2=(a+b)/2=10 Площадь треугольника COD равна 1/2CD*EO=1/2*10*3=15 Треугольник CPD прямоугольный, по т.Пифагора PD²=CD²-CP²=10²-6²=64 PD=8 С другой стороны PD=b/2-a/2 b/2=PD+a/2 b/2=8+a/2 b=16+a Подставляя в (1) найдем a (a+16+a)=20 2a=20-16 2a=4 a=2 b=16+2=18 Рассматривая прямоугольные треугольники OCE и OED по т.Пифагора находим OE=√(3²+(a/2)²)=√(9+1)=√10 OD=√(3²+(b/2)³)=√(9+81)=√90=3√10 Cтороны треугольника CPD найдены Площадь треугольника и его радиус описанной окружности связаны формулой S=OE·OD·CD/(4R) R=OE·OD·CD/(4S) R=√10·3√10·10/(4·15)=300/60=5 ответ: 5 см
Объяснение:
1.Продолжите предложение. А) Центральный угол-это угол , вершина ,которого в центре окружности , а стороны пересекают окружность
Б) Угол между касательной и хордой равен равен половине дуги, которую стягивает данная хорда.
2.Постройте окружность, обозначьте её центр точкой О и постройте вписанный центральный углы, опирающиеся на дугу АВ. (в приложении)
3.А) Постройте центральный угол 120 градусов и дополните рисунок вписанным углом, опирающимся на эту дугу и найдите градусную меру вписанного угла. ( в приложении)
Б) Постройте острый вписанный в окружность угол и найдите градусную меру центрального угла, опирающегося на эту дугу. ( в приложении)
4.Дана окружность с центром в точке О, АN-касательная, СВ и СА- хорды. Известно, что дуга АС равна 100 градусам, дуга АВ относится к дуге ВС как 2 к3. Дуги АВ и ВС меньше полуокружности.
Найдите: а) углы САN, АОВ, АСВ, СВО; б)дуги АВ и СВ.
Решение.
а)∠САN=1/2*100°=50° по правилу п.1Б;
б)Пусть одна часть дуги х°, тогда из условия ∪АВ:∪ВС=2:3 ,
получаем :∪АВ=2х ,∪ВС=3х.
Вся окружность 360°⇒2х+3х+100=360 или 5х=260 или х=52°.
Значит ∪АВ=104° ,∪ВС=156°.
а)∠АОВ=∪АВ , как центральный⇒ ∠АОВ=104°,
∠АСВ=1/2*∪АВ , как вписанный ⇒∠АСВ=52°,
∠СВО=?. Рассмотрим ΔСВО-равнобедренный, т.к. ОВ=ОС как радиусы.∠ВОС=∪ВС=156°. Значит ∠ВСО=∠СВО=(180°-156°):2=12°