ответ:
основание пирамиды – равнобедренный прямоугольный треугольник авс, угол с=90°, ас=вс=6 см. высота пирамиды - третье из смежных попарно перпендикулярных ребер=8 см.
площадь полной поверхности – сумма площади основания и площадей боковых граней.
s осн=ас•bc: 2=18 см²
грани амс=вмс по равенству катетов.
s ∆ amc=s ∆ bmc=6•8: 2=24
s amb=mh•ab: 2
ab=ac: sin45°=6√2
ch высота и медиана ∆ асв, сн=ав: 2=3√2
высота mh большей боковой грани s=√(ch*+mh*)=√(18+64)=√82
s∆amb=6√2•√82=6√164=12√41
s полн=18+2•24+12√41=66+12√41
объяснение:
Дано :
∆АВС — равнобедренный, вписан в окружность.
АС — основание = радиус описанной окружности.
Найти :
∪АС = ?
∪АВ = ?
∪ВС = ?
Если хорда равна радиусу окружности, то она стягивает дугу в 60°.АС — хорда описанной окружности, поэтому ∪АС = 60° (по выше сказанному).
∠АВС — вписанный (по определению).
По свойству вписанных углов —
∠АВС = 0,5*∪АС
∠АВС = 0,5*60°
∠АВС = 30°.
Углы у основания равнобедренного треугольника равны.Поэтому, по теореме о сумме углов треугольника —
∠АСВ = ∠ВАС = 0,5*(180° - ∠АВС) = 0,5*(180° - 30°) = 0,5*150° = 75°.
Причём ∠АСВ и ∠ВАС — вписанные по определению.
Равные вписанные углы опираются на равные дуги.Тогда —
∪АВ = ∪ВС = 2*∠ВАС = 2*75° = 150°.
60°, 150°, 150°.