Обозначим трапецию АВСД, с большим основанием АД. Тогда опустим из угла С высоту СК к этому основанию. Получим треугольник СКД. Это равнобедренный треугольник,т.к угол СКД 90 градусов, а СДК 45(соответственно, другой угол тоже 45) Сторона СК=АВ=9см (т.к получается,что это стороны прямоугольника АВСК. Соответственно, сторона КД=СК=9см(тк треугольник равнобедренный). Сторона АД=23 см, а КД=9 см, тогда найдем длину АК: 23-9=14 см. Вернемся к прямоугольнику АВСК, в котором ВС=АК=14см. При этом, сторона ВС является меньшим основанием трапеции.
Пусть дана трапеция АВСД. Сделаем рисунок. Из вершины С проведем параллельно диагонали ВД прямую до пересечения с продолжением основания АД. Точку пересечения обозначим К. Рассмотрим треугольник АСК. Его основание АК равно сумме оснований трапеции, т.к. ВСКД - параллелограмм ( ВС параллельно АД по условию, ВК параллельно диагонали ВД по построению) ⇒ ДК=ВС.Средняя линия - это полусумма оснований. Сумма оснований АК=7,5*2=15 см Площадь трапеции равна половине произведения ее высоты на сумму оснований. Площадь треугольника АСК равна половине произведения высоты на АК, т.е. на сумму оснований трапеции. Высота треугольника равна высоте трапеции. Следовательно, его площадь равна площади трапеции. Но площадь треугольника можно найти и по формуле Герона, где р - полупериметр, а а,b и с - стороны треугольника АСК S=√{p (p−a) (p−b) (p−c)} Не буду приводить вычисления, их несложно сделать самостоятельно. Площадь трапеции АВСД равна площади треугольника АСК и равна 84 см²