О - центр окружности - точнее, обеих окружностей, заданных в задаче (ясно, что точки А1 В1 С1 равноудалены от центра вписанной окружности, то есть окружность, вписанная в АВС и окружность, описанная вокруг А1В1С1 - и проходящая через А - имеют общий центр).
В треугольнике АС1О стороны ОС1 и ОА равны, и - кроме того, медиана АВ перпендикулярна стороне ОС1. То есть АС1О - равносторонний треугольник.
Аналогично и АВ1О - равносторонний треугольник, но уже и без того ясно, что угол ВАО = 30 градусам, а угол САВ = 60 градусам.
Отсюда по теореме синусов 2Rsin(60°) = a; R = a/√3;
:Сказочную волщевную палочку в нашем мире не каждый может увидеть ,но каждый хрчет её иметь при себе , но помните волщебную палочку надо использовать с благим намерением , она не должна попасть в руке злову волщебнику так ,что если ты хороший тебе нечего не грозит.
Аргумент 1: Если бы у меня была бы волдебная палочка то я бы не растирялся и сразу бы начал творить добро. Я бы пожелала чтобы дети с отклонениями стали здоровыми и крепкими детьми, чтобы сироты потерявшие родителей нашли свою семью, чтобы в нашей строне не было серийных убийц и насильников, а были только хорошие люди, чтобы мои родители были здоровы, а только потом я бы пожелал ,что то для себя и то не какие небуть игрушки , а чтоб я был здоров.
Заключение: Следовательно еслибы у меня была волщебная палочка то я бы использовал не для моей собственой выгоды , а для блага во имя моей родины.
Объяснение:
Найдем S(AOB):
S(AOD):S(BOC) =16:9=k2
k=4/3
k=4/3=AO/OC
S(AOB)=0,5•BL•AO
S(BOC)=0,5•BL•OC
S(AOB)/S(BOC) =(0,5•BL•AO)/(0,5•BL•OC)=AO/OC=4/3
S(AOB)/S(BOC) =4/3
S(AOB)=4/3•S(BOC)=4/3•9=12
S(ABCD)=12+12+16+9=49
Объяснение:
Площади ∆AOB и ∆DOC равны. Так как площади ∆ABD и ∆ACD равны. У них общее основание и высоты равны.
S(AOB)=S(ABD)-S(AOD)=S(ACD)-S(AOD)=S(COD)
S(AOD)≠S(BOC)
Следовательно, у этих треугольников AD и BC основания трапеции.
∆AOD ~ ∆ BOC (углы BOC=AOD как вертикальные), а
стороны пропорциональны их отношение площадей равно квадрату коэффициента подобия k.
В тр-ке АIС1имеем AI=C1I, значит он равнобедренный и угол IC1A=углу С1AI; в нем же АВ - медиана, перпендикулярная стороне C1I, значит тр-к С1АI - тоже равнобедренный (углы IC1A=AIC1). Итак, в тр-ке АIC1 все углы равны по 60.
В тр-ке АВС АI - биссектриса, так как центр I вписанной окружности лежит на пересечении биссектрис. Значит угол ВАI = IAC и угол ВАС = 60. В тр-ке АВС по теореме синусов 2R=BC/SinA, то есть R = a/2Sin60 = a/(2*√3/2) = a/√3;