Дана правильная четырехугольная пирамида mabcd, всеребра основания которой равны 6. угол между прямыми dm и al, l - середина ребра mb, равен 60. найдите высоту данной пирамиды.
10. Все стороны ромба равны. Значит его периметр = 8*4 см= 32 см Меньшая диагональ ромба делит его на 2 равнобедренных треугольник. Известно, что угол напротив основания = 60 градусов, значит другме углы(при основании) = (180-60)/2 = 60 градусов. Треугольник, у которого все углы равны, называется равносторонним, а значит меньшая диагональ равна стороне = 8см. ответ: Периметр ромба = 32 см, меньшая диагональ = 8 см.
11. Диагональ (любая) делит ромб на 2 равнобедренных треугольника. Известно, что угол при основании этого треугольника (между диагональю и стороной ромба) = 60 градусов. Т.к. треугольник равнобедренный, то и второй угол между диагональю и ромбом будет 60 градусов. Третий угол = 180-60-60 = 60 градусов. Получаем равносторонний треугольник. Отсюда следует, что сторона ромба = диагонали = 10 см. А периметр = 4*10см= 40 см ответ: 40 см
10. Все стороны ромба равны. Значит его периметр = 8*4 см= 32 см Меньшая диагональ ромба делит его на 2 равнобедренных треугольник. Известно, что угол напротив основания = 60 градусов, значит другме углы(при основании) = (180-60)/2 = 60 градусов. Треугольник, у которого все углы равны, называется равносторонним, а значит меньшая диагональ равна стороне = 8см. ответ: Периметр ромба = 32 см, меньшая диагональ = 8 см.
11. Диагональ (любая) делит ромб на 2 равнобедренных треугольника. Известно, что угол при основании этого треугольника (между диагональю и стороной ромба) = 60 градусов. Т.к. треугольник равнобедренный, то и второй угол между диагональю и ромбом будет 60 градусов. Третий угол = 180-60-60 = 60 градусов. Получаем равносторонний треугольник. Отсюда следует, что сторона ромба = диагонали = 10 см. А периметр = 4*10см= 40 см ответ: 40 см
Пусть H - середина ABCD, MH - высота пирамиды MABCD,
MH - медиана, биссектриса и высоты треугольника DBM => H - середина DB=> HL - средняя линия треугольника DMB => 2LH=DH;
AH перпендикулярно BD ( как диагонали квадрата),
AH перпендикулярно МH ( т.к. МH - высота пирамиды)
DB пересекает MH в точке H => AH перпендикулярна плоскости DMB, значит угол HLA = 60° (по условию),
CA = √(CB^2+AB^2)=6√2 (по теореме Пифагора)
HA=1/2CA=3√2
LM=AH/tg60° = √6
DM=2LM=2√6
MH=√(DM^2-DH^2)=√6 (по теореме Пифагора)
ответ: √6