Для того, чтобы найти величину третьего внешнего угла треугольника мы прежде всего должны вспомнить чему равна сумма всех внешних углов треугольника.
Но прежде всего давайте посмотрим, что нам дано в условии. Итак, нам известно, что два внешних угла треугольника равны 120° и 160°.
Сумма внешних углов треугольника равна 360°. Для того, чтобы найти чему равен третий внешний угол треугольника мы должны из 360° вычесть сумму двух других углов треугольника.
Давайте вычислим,
360° - (120° + 160°) = 360° - 280° = 80°.
Дано:
S=320
h=8
Основания относятся друг к другу как 3:5
Найти: основания
1. Сначала напишем формулу вычисления площади трапеции
S=a+b×h/2
2. Основания можно выразить через коэффициент пропорциональности-x, следовательно получается:
3х и 5х
3. Подставим все значения и решим уравнение:
320=3х+5х×8/2
320=8х×8/2
320=64х/2
64х=320×2
64х=640
х=640/64
х=10
4. Теперь подставим вместо х числа и получим значения оснований:
3х=3×10=30
5х=5×10=50
Если подставить значения оснований и найти площадь получится 320
30+50×8/2=80×8/2=640/2=320
Угол треугольника смежный с углом в 148° равен 180° - 148° = 32°
Если один из несмежных углов обозначить через x, то второй будет x + 36
Сумма углов треугольника равна 180°:
x + x + 36 + 32 = 180
2x = 180 - 68
2x = 112
x = 56
x + 36 = 56 + 36 = 92
Углы треугольника несмежные с внешним равны 56° и 92°
Объяснение: