Геометрические фигуры в архитектуре Ни один из видов искусств так тесно не связан с геометрией как архитектура. Ле Корбюзье считал геометрию тем замечательным инструментом, который позволяет установить порядок в пространстве. Фигуры, которые он упоминает, являются теми математическими моделями, на базе которых строятся архитектурные формы. Чаще всего в архитектурном сооружении сочетаются различные геометрические фигуры. Например, в башне Московского кремля в основании можно увидеть прямой параллелепипед, переходящий в средней части в фигуру, приближающуюся к цилиндру, завершается же она пирамидой. Конечно, можно говорить о соответствии архитектурных форм указанным геометрическим только приближенно, отвлекаясь от мелких деталей.
ABC - равнобедренный треугольник, AC - основание. EF - средняя линия, EF||AC, EF=16 см. BD - биссектриса, BD=30 см.
Биссектриса к основанию равнобедренного треугольника является также высотой и медианой. BD - биссектриса, следовательно и медиана, а D - середина AC. Отрезок ED соединяет середины сторон AB и AC, является искомой средней линией, параллелен боковой стороне BC и равен ее половине.
ED= BC/2
BD - биссектриса, следовательно и высота, угол BDC - прямой. В прямоугольном треугольнике BDC по теореме Пифагора:
BC=√(BD^2+DC^2)
DC=AC/2 (D - середина AC). Средняя линия EF также равна половине AC, следовательно DC=EF=16 см.
OD=OE (радиусы)
AF=OD (ADOF - прямоугольник)
AD=AF=2, CE=CF=5, BD=BE (отрезки касательных из одной точки)
AB^2 +AC^2 =BC^2 (т Пифагора)
BC=x, AB=x-3
x^2 =(x-3)^2 +7^2 => x =29/3 (см) ~9,7