Даны вершины пирамиды АВСD А(1,2,3), В(2;0;0), С(3;2;5), D(4;0;0).
1) Находим векторы АВ и АС.
АВ = (2-1; 0-2; 0-3) = (1; -2; -3).
АС = (3-1; 2-2; 5-3) = (2; 0; 2).
Векторное произведение равно:
i j k| i j
1 -2 -3| 1 -2
2 0 2| 2 0 = -4i - 6j + 0k - 2j - 0i + 4k = 4i - 8j + 4k = (4; -8; 4).
S = (1/2)*√(16 + 64 + 16) = (1/2)*√96 = 2√6 ≈ 4,898979.
2) Находим вектор АД = (3; -2; -3).
Смешанное произведение (АВ*АС)хАД равно:
4 -8 4
3 -2 -3 = 12 + 16 - 12 = 16.
V = (1/6)*16 = 8/3.
Чтобы доказать равенство треугольников, в них надо найти три пары соответственно равных элементов. Сделайте себе подсказку.
1 признак. в нем вы должны найти по две равные стороны и углу между ними. И сделать вывод о равенстве треугольников.
2 признак. там надо доказать равенство стороны и двух прилежащих к ней углов.
3. самый легкий. Докажете, что три стороны одного равны трем сторонам другого, и треугольники окажутся равными.
Теперь. как искать эти элементы. Они могут быть равны по условию. по свойствам, например, в параллелограмме противоположные стороны равны. Углы. это могут быть вертикальные. Их надо уметь видеть. т.к. о равенстве вертикальных в условии сказано не будет. Дальше.. общую сторону тоже надо уметь подмечать.
Теперь по Вашему вопросу. Почему картинка одна. а применить к ней не один иногда, а несколько признаков можно? Это зависит от мастерства поиска Вашего. Вот что отыщете, то и используете при доказательстве. Отыщете по три равные стороны, окажется, что можно применить третий признак. А заметите, например здесь же две стороны и... ну пусть вертикальные углы, примените первый признак.