Подобными фигурами могут быть не только треугольники.если изменить (увеличить или уменьшить) все размеры любой плоской фигуры в одно и то же число раз (отношение подобия), то старая и новая фигуры называются подобными при условии, что в двух подобных фигурах любые соответственные углы равны. также два тела могут быть подобны, если одно из них может быть получено из другого путём увеличения (или уменьшения) всех его линейных размеров в одном и том же отношении. например, картина и её фотография — это подобные фигуры. карты одной и той же территории, сделанные в разных масштабах, подобны. автомобиль и его модель — подобные тела, также любой макет подобен оригиналу, если сделан соблюдая масштаб ко всем размерам. из фигур всегда подобны: все квадраты,все равносторонние треугольники,все круги,все окружности.
1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Доказательство: Пусть О - середина отрезка АВ. Проведем ОН⊥b и продлим его до пересечения с прямой а. ΔОАК = ΔОВН по стороне и двум прилежащим к ней углам (АО = ОВ, так как О - середина АВ, углы при вершине О равны как вертикальные, ∠ОАК = ∠ОВН по условию - накрест лежащие), значит ∠ОАК = ∠ОВН = 90°. Два перпендикуляра к одной прямой параллельны, значит а║b.
2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. Доказательство: ∠1 = ∠2 по условию - соответственные, ∠1 = ∠3 как вертикальные, значит ∠2 = ∠3. А эти углы - накрест лежащие. Значит, прямые параллельны по первому признаку.
3. Если при пересечении двух прямых секущей сумма односторонних углов 180°, то прямые параллельны. Доказательство: ∠1 + ∠2 = 180° по условию - односторонние углы. ∠2 + ∠3 = 180° так как эти углы смежные, следовательно ∠1 = ∠3. А эти углы - накрест лежащие. Значит, прямые параллельны по первому признаку.
емоції які можуть виникнути