Синусом угла α называют отношение противолежащего катета к гипотенузе.
1) Поскольку sinα=1/2, значит гипотенуза в 2 раза больше катета. Значит надо построить треугольник с таким отношением. Если брать конкретные значения, то пусть один из катетов прямоугольного треугольника равен AB=5 см, тогда гипотенуза AC=5*2=10 см.
2) Поскольку sinα=2/5, значит гипотенуза в 5/2=2,5 раза больше катета. Если брать конкретные значения, то пусть один из катетов прямоугольного треугольника равен AB=4 см, тогда гипотенуза AC=4*2,5=10 см.
3) Поскольку sinα=0,6, значит гипотенуза в 1/0,6=10/6=5/3 раза больше катета. Если брать конкретные значения, то пусть один из катетов прямоугольного треугольника равен AB=6 см, тогда гипотенуза AC=6*5/3=10 см.
4) sinα=0,7, значит катет в 0,7 раз меньше гипотенузы. Если брать конкретные значения, то пусть гипотенуза AC=10 см, тогда катет AВ=0,7*10=7 см.
6. Дано: ΔАВС, СР-биссектриса, АР=4 см, ВР=5 см
Найти: Периметр ΔАВС
1. СР- биссектриса ΔАВС => АР:ВР=АС:ВС
4:5=10:ВС
ВС=(5*10):4=12,5 (см)
2. Р(АВС)=АВ+ВС+АС=(АР+ВР)+ВС+АС
Р(АВС)=4+5+12,5+10= 31,5 (см)
ответ: 31,5 см
Объяснение:
7. Позначимо ромба АВСD, АВ = 5см, О - точка перетину діагоналей АС і ВD, АС = 6см. Знайти висоту АК
Розв"язання:
Діагоналі ромба рівні, звідси, АО = СО = АС/2=6/2=3, ВО = ОD
З прямокутного трикутника АВО( кут АОВ = 90 градусів):
За т. Піфагора
Звідси, діагональ ВD = 2ВО = 2*4= 8см.
Знаходимо полщу ромба
Тоді висота ромба дорівнює:
Відповідь: 4.8 см.