М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pashamironov20
pashamironov20
08.04.2022 06:51 •  Геометрия

ДО ТЬ БУДЛАСКА СЬОГОДНІ ТРЕБА ЗДАТИ На малюнку - прямокутний трткутник ABC ( ∠C=90°) . Знайдіть:
а) sin A
b) soc B
d) tg A
c) sin B


ДО ТЬ БУДЛАСКА СЬОГОДНІ ТРЕБА ЗДАТИ На малюнку - прямокутний трткутник ABC ( ∠C=90°) . Знайдіть: а)

👇
Ответ:
Lirki
Lirki
08.04.2022

Объяснение:Дано: ΔABC, ∠C = 90°, AC = 5 CM, BC = 12 CM.

Знайти: sin ∠A, cos ∠A.

Розв’язання. За умовою задано ΔABC, ∠C = 90°, АС = 5 см, ВС = 12 см, тоді  За теоремою Піфагора Тоді  

Відповідь: 12/13; 5/13.

718. Дано: ΔАВС, ∠C = 90°, АС = 7 см, ВС = 24 см.

Знайти: sin ∠B, cos ∠B.

Розв’язання. За умовою задано ΔABC, ∠С = 90°, АС = 7 см, ВС = 24 см, тоді  За теоремою Піфагора АВ2 = ВС2 + АС2. Отже,  Тоді  

Відповідь: 7/25; 24/25.

719. 1) Дано: ΔАВС, ∠С = 90°, ВС = a, ∠B = β.

Знайти: АС.

Розв’язання. За умовою у ΔАВС ∠C = 90°, ВС = а, ∠В = β. Тоді АС = ВС ∙ tg ∠B; АС = a tg β.

Відповідь: а ∙ tg β.

2) Дано: ΔАВС, ∠С = 90°, АС = b, ∠А = α.

Знайти: АВ.

За умовою у ΔАВС ∠C = 90°, АС = b, ∠A = α. Тоді  

Відповідь:  

723. 1) Дано: ΔABC, ∠C = 90°, AC = 4√3 CM, ∠A = 30°. Знайти: AB.

2) Дано: ΔABC, ∠C = 90°, AB = 5√2 CM, ∠B = 45°. Знайти: AC.

Розв’язання. За умовою задано ΔABC, ∠C = 90°,

1) Оскільки АС = 4√3 CM, ∠A = 30°, то  маємо:  

Відповідь: 8 см.

2) Оскільки АВ = 5√2 см, ∠B = 45°, то  

Відповідь: 5 см.

724. 1) Дано: ΔАВС, ∠C = 90°, ВС = 6√3 см, АВ = 30°. Знайти: АВ.

2) Дано: ΔABC, ∠C = 90°, АВ = 10√2 см, ∠A = 45°. Знайти: ВС.

Розв’язання. За умовою задано ΔABC, ∠C = 90°.

1) Оскільки ВС = 6√3 CM, ∠B = 30°, то  

Відповідь: 12 см.

2) Оскільки АВ = 10√2 см, ∠A = 45°, то  

Відповідь: 10 см.

727. 1) Дано: ΔABC, ∠C = 90°, BC = 5 CM, ∠A = 42°. Знайти: AB.

Розв’язання. За умовою у ΔАВС ∠C = 90°, ВС = 5 см, ∠A = 42°. Тоді  

Відповідь: 7,48 см.

2) Дано: ΔABC, ∠C = 90°, АВ = 10 см, ∠B = 37°. Знайти: ВС.

Розв'язання. За умовою у ΔАВС ∠C = 90°, АВ = 10 см, ∠B = 37°. Тоді ВС = АВ ∙ cos ∠B, ВС = 10 ∙ cos 37° = 10 ∙ 0,799 = 7,99 см.

Відповідь: 7,99 см.

3) Дано: ΔABC, ∠C = 90°, АС = 4 см, ∠A = 82°. Знайти: ВС.

Розв’язання. За умовою у ΔАВС ∠C = 90°, АС = 4 см, ∠A = 82°. Тоді ВС = АС ∙ tg ∠A; ВС = 4 ∙ tg 82° = 4 ∙ 7,116 = 28,46 см.

Відповідь: 28,46 см.

728. 1) Дано: AABC, ZC = 90°, АВ = 8 см, ZA = 15°. Знайти: АС.

Розв’язання. За умовою у ΔАВС ∠C = 90°, АВ = 8 см, ∠A = 15°, тоді АС = АВ ∙ cos ∠A, АС = 8 ∙ cos 15° = 8 ∙ 0,966 = 7,63 см.

Відповідь: 7,73 см.

2) Дано: ΔABC, ∠C = 90°, ВС = 9 см, ∠A = 43°. Знайти: АВ.

Розв’язання. За умовою у ΔАВС ∠C = 90°, ВС = 9 см, ∠A = 43°, тоді  

Відповідь: 13,20 см.

3) Дано: ΔАВС, ∠C = 90°, АС = 5 CM, ∠B = 29°. Знайти: ВС.

Розв’язання. За умовою задано ΔABC, ∠C = 90°, АС = 5 CM, ∠B = 29°, тоді  

Відповідь: 9,03 CM.

729. 1) Для того щоб побудувати ∠A,  треба:

1. Побудувати прямий кут, ∠C.

2. На одній його стороні відкласти відрізок СА = 5 одиничним відрізкам.

3. На другий стороні прямого кута відкласти відрізок СВ = 3 одиничним відрізкам.

4. З’єднати т. А та т. В.

У прямокутному трикутнику  

2) Для того щоб побудувати ∠A, sin ∠A = 1/7, треба:

1. Побудувати прямий кут С.

2. На одній його стороні відкласти відрізок АС = 1 одиничному відрізку.

3. Із точки В, як із центра, радіусом, що дорівнює 7 таким самим одиничним відрізкам, описати дугу до перетину з іншою стороною прямого кута. Точку перетину позначити А. З’єднати т. А і т. В, отримаємо прямокутний трикутник ABC.

Кут А буде шуканим, оскільки sin ∠A = 1/7.

3) Для того щоб побудувати ∠A, cos ∠A = 2/3, треба:

1. Побудувати прямий кут С.

2. На одній з його сторін від вершини відкласти відрізок АС = 2 одиничним відрізкам. .

3. Із точки А, як із центра, радіусом, що дорівнює 3 таким самим одиничним відрізкам, описати дугу до перетину з іншою стороною прямого кута. Позначити точку В.

4. З’єднаємо т. А і т. В, отримаємо прямокутний ΔABC.

∠A — шуканий, оскільки cos ∠A = 2/3.

730. Аналогічно № 729.

731. Дано: ABCD — прямокутник, АС = a, ∠ACB = β.

Знайти: РABCD.

4,6(46 оценок)
Ответ:
Рара15рара1
Рара15рара1
08.04.2022

Объяснение:

Синус кута - це відношення протилежного катета до гіпотенузи,

Косинус кута - це відношення прилеглого катета до гіпотенузи,

Тангенс кута - це відношення протилежного катета до прилеглого катету.

На цей раз, що sin A= 15/17 ; cos B= 15/17 ; tg A= 15/8 ; sin B=8/17

4,5(56 оценок)
Открыть все ответы
Ответ:
Midaw
Midaw
08.04.2022

Отрезок BD - диаметр окружности с центром О. Хорда AC делит

пополам радиус OB и перпендикулярна к нему. Найдите углы

четырёхугольника ABCD и градусные меры дуг AB BC CD и AD.

Соединим центр окружности с вершиной А.

Отрезок ОА - радиус, МО равен его половине.

sin ∠ МАО равен МО: АО=1/2.

Это синус 30°∠ МАО=30°, ⇒∠ АОВ=60°.

ВО=АО=радиус окружности. ⇒ △ АОВ равнобедренный.

Сумма углов треугольника 180 градусов.

∠ ОВА=∠ОАВ=(180°-60°):2)=60° ⇒ △ АОВ- равносторонний.

Углы ВАD и ВСD опираются на диаметр ⇒ они прямые=90°.

⊿ ВСD и ⊿ВАD -прямоугольные, и

∠СDВ=∠АDВ=180°-(90°-60°)=30°

⊿ ВСD=⊿ВАD.

∠ D=2 ·∠АDВ=2·30°=60°

Сумма углов четырехугольника 360°

∠АВС=360°- 2·90°- 60°=120°

Градусная мера дуги равна центральному углу, который на нее

опирается.

На дугу АВ опирается центральный угол АОВ=60°⇒ ее градусная мера 60°

На дугу СВ опирается центральный угол СОВ=60°⇒ ее градусная мера 60°

В треугольнике САD ∠САD=∠DАС=60°

Вписанный угол равен половине градусной меры дуги, на которую

опирается.

На дугу CD опирается вписанный угол САD=60°⇒ она равна 2·60°=120°

На дугу АD опирается вписанный угол АСD=60°⇒ она равна 2·60°=120°

∠А=С=90°

∠В=120°

∠Д=60°

градусные меры дуг

AB=60°

BC=60°

CD=120°

AD=120°.

4,5(24 оценок)
Ответ:
aielstar
aielstar
08.04.2022

Отрезок BD - диаметр окружности с центром О. Хорда AC делит

пополам радиус OB и перпендикулярна к нему. Найдите углы

четырёхугольника ABCD и градусные меры дуг AB BC CD и AD.

Соединим центр окружности с вершиной А.

Отрезок ОА - радиус, МО равен его половине.

sin ∠ МАО равен МО: АО=1/2.

Это синус 30°∠ МАО=30°, ⇒∠ АОВ=60°.

ВО=АО=радиус окружности. ⇒ △ АОВ равнобедренный.

Сумма углов треугольника 180 градусов.

∠ ОВА=∠ОАВ=(180°-60°):2)=60° ⇒ △ АОВ- равносторонний.

Углы ВАD и ВСD опираются на диаметр ⇒ они прямые=90°.

⊿ ВСD и ⊿ВАD -прямоугольные, и

∠СDВ=∠АDВ=180°-(90°-60°)=30°

⊿ ВСD=⊿ВАD.

∠ D=2 ·∠АDВ=2·30°=60°

Сумма углов четырехугольника 360°

∠АВС=360°- 2·90°- 60°=120°

Градусная мера дуги равна центральному углу, который на нее

опирается.

На дугу АВ опирается центральный угол АОВ=60°⇒ ее градусная мера 60°

На дугу СВ опирается центральный угол СОВ=60°⇒ ее градусная мера 60°

В треугольнике САD ∠САD=∠DАС=60°

Вписанный угол равен половине градусной меры дуги, на которую

опирается.

На дугу CD опирается вписанный угол САD=60°⇒ она равна 2·60°=120°

На дугу АD опирается вписанный угол АСD=60°⇒ она равна 2·60°=120°

∠А=С=90°

∠В=120°

∠Д=60°

градусные меры дуг

AB=60°

BC=60°

CD=120°

AD=120°.

4,5(25 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ