Дано треугольную пирамиду у которой все стороны равны 11 нужно найти: 1)площадь ( s ) 2)объем( v ) 3) площадь боковой поверхности (sб.п.) 4)площадь полной поверхности( sп.п.) сделайте
Треугольная пирамида, у которой ребра равны, является правильной. Все её грани являются равносторонними треугольниками.
1)Площадь ( S ) Надо понимать, площадь одной грани: S=а²√3:4=121√3:4см²
3) Площадь боковой поверхности (Sб.п.) Состоит из трех граней и равна 3 S=3 а²√3:4=363√3:4см²
4)Площадь полной поверхности( Sп.п.) - площадь всех четырех граней 4S=4 а²√3:4=а²√3=121√3 см²
2)Объем( V ) V=SH:3 Для того, чтобы вычислить объем, следует найти высоту H пирамиды. Ее найдем из прямоугольного треугольника МАО, в котором
АМ- гипотенуза (ребро пирамиды) МО( высота) - катет, АО ( часть высоты основания) - катет
В правильной треугольной пирамиде основание её высоты находится в центре основания пирамиды, который одновременно является центром описанной окружности, поэтому АО равна радиусу описанной окружности и равна 2/3 высоты основания.
Высота основания h=а√3):2=11√3):2 R=2/3h= а√3):3=11√3):3 ОА=R=11√3):3 Найдем высоту пирамиды ОМ из треугольника АОМ: ОM²=AМ²-OА² ОM²=11²-{11√3):3} ²=121-121*3:9=(1089-363):9=726/9=242/3 ОМ=√(242/3)=11√2):√3
V = 1/3 Sh =1/3*{121√3:4}{11√2):√3}=1331√2:12 см³
Для объема правильного тетраэдра есть формула, которая позволяет пропустить все эти промежуточные вычисления:
Если считать плотности одинаковыми, тогда арбузы отличаются только по объему, от коего и зависит масса. так. как объем - это кубическая (третьей степени) величина от радиуса(диаметра), то увеличение диаметра в 3 раза ведет увеличение объема в 3*3*3=27 раз. Соответственно и масса больше в 27 раз.
С точки зрения здравого смысла задача бессмысленна. Если спелый нормальный арбуз - масса хотя бы 3 кг, тогда другой 81 кг. Ого! А если другой - 27 кг (тоже ого!), тогда первый - всего 1 кг. Тогда он , вероятнее всего, зеленый, плотности разные, соответственно и диаметры отличаются не в 3 раза. Хотя составителям задачи что только не приснится в пьяном угаре
Можно и с рисунком. Касательные к окружности, проведённые из одной точки, равны. Обозначим равные отрезки как показано на рисунке через x, y и z. AB=x+z, AC=x+y. По теореме биссектрис АС/АВ=СД/ВД, (x+y)/(x+z)=y/z, xz+yz=xy+yz, xz=xy, z=y. СД/ВД=у/z=1, значит АС/АВ=1, значит АВ=АС. Треугольник АВС - равнобедренный, в нём АД - высота и биссектриса, центр вписанной окружности лежит на биссектрисе, вписанная окружность касается стороны ВС в точке Д, но это не значит, что АВ=ВС. Это равенство может быть только если тр-ник АВС правильный, но это лишь частный случай. Не доказано.
Треугольная пирамида, у которой ребра равны, является правильной. Все её грани являются равносторонними треугольниками.
1)Площадь ( S )
Надо понимать, площадь одной грани:
S=а²√3:4=121√3:4см²
3) Площадь боковой поверхности (Sб.п.)
Состоит из трех граней и равна
3 S=3 а²√3:4=363√3:4см²
4)Площадь полной поверхности( Sп.п.) - площадь всех четырех граней
4S=4 а²√3:4=а²√3=121√3 см²
2)Объем( V )
V=SH:3
Для того, чтобы вычислить объем, следует найти высоту H пирамиды.
Ее найдем из прямоугольного треугольника МАО, в котором
АМ- гипотенуза (ребро пирамиды)
МО( высота) - катет,
АО ( часть высоты основания) - катет
В правильной треугольной пирамиде основание её высоты находится в центре основания пирамиды, который одновременно является центром описанной окружности, поэтому
АО равна радиусу описанной окружности и равна 2/3 высоты основания.
Высота основания
h=а√3):2=11√3):2
R=2/3h= а√3):3=11√3):3
ОА=R=11√3):3
Найдем высоту пирамиды ОМ из треугольника АОМ:
ОM²=AМ²-OА²
ОM²=11²-{11√3):3} ²=121-121*3:9=(1089-363):9=726/9=242/3
ОМ=√(242/3)=11√2):√3
V = 1/3 Sh =1/3*{121√3:4}{11√2):√3}=1331√2:12 см³
Для объема правильного тетраэдра есть формула, которая позволяет пропустить все эти промежуточные вычисления:
V =а³√2):12
и тогда
V =11³√2):12=1331√2:12 см³