М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dianaandmasha
dianaandmasha
16.05.2023 22:38 •  Геометрия

В параллелограмме ABCD сторона AD и высота BE относятся как 3:2, площадь параллелограмма равна 216 см^2.Найдите высоту параллелограмма.

👇
Ответ:
таня1697
таня1697
16.05.2023

12см.

Объяснение:

\frac{AD}{BE}=\frac{3}{2} - исходя из условий задачи.

Тогда если BE=x, то AD=3/2*x

Площадь параллелограмма: S=a*h=AD*BE

S=216 из условий задачи.

216=\frac{3}{2}x*x

144=x^{2}

x=12

h=BE=12


В параллелограмме ABCD сторона AD и высота BE относятся как 3:2, площадь параллелограмма равна 216 с
4,5(91 оценок)
Открыть все ответы
Ответ:
lerastorogeva
lerastorogeva
16.05.2023

Построим отрезок BC длины a. Центр O описанной окружности треугольника ABC является точкой пересечения двух окружностей радиуса R с центрами в точках B и C. Выберем одну из этих точек пересечения и построим описанную окружность S треугольника ABC. Точка A является точкой пересечения окружности S к прямой, параллельной прямой BC и отстоящей от нее на расстояние ha (таких прямых две).

8.2.

Построим точки A1 и B1 на сторонах BC и AC соответственно так, что  BA1 : A1C = 1 : 3 и AB1 : B1C = 1 : 2. Пусть точка X лежит внутри треугольника ABC. Ясно, что SABX : SBCX = 1 :  2 тогда и только тогда, когда точка X лежит на отрезке BB1, и SABX : SACX = 1 : 3 тогда и только тогда, когда точка X лежит на отрезке AA1. Поэтому искомая точка M является точкой пересечения отрезков AA1 и BB1.

8.3.

Пусть O — центр данной окружности,  AB — хорда, проходящая через точку P,  M — середина AB. Тогда |AP – BP| = 2PM. Так как РPMO = 90°, точка M лежит на окружности S с диаметром OP. Построим хорду PM окружности S так, что PM = a/2 (таких хорд две). Искомая хорда задается прямой PM.

8.4.

Пусть R — радиус данной окружности,  O — ее центр. Центр искомой окружности лежит на окружности S радиуса |R ± r| с центром O. С другой стороны, ее центр лежит на прямой l, параллельной данной прямой и удаленной от нее на расстояние r (таких прямых две). Любая точка пересечения окружности S и прямой l может служить центром искомой окружности.

8.5.

Пусть R — радиус окружности S,  O — ее центр. Если окружность S высекает на прямой, проходящей через точку A, хорду PQ и M — середина PQ, то OM2 = OQ2 – MQ2 = R2 – d2/4. Поэтому искомая прямая касается окружности радиуса  

Ц

 

R2 – d2/4

 

с центром O.

8.6.

Возьмем на прямых AB и CD точки E и F так, чтобы прямые BF и CE имели заданные направления. Рассмотрим всевозможные параллелограммы PQRS с заданными направлениями сторон, вершины P и R которых лежат на лучах BA и CD, а вершина Q — на стороне BC (рис. 8.1). Докажем, что геометрическим местом вершин S является отрезок EF. В самом деле,  

SR

EC

=   PQ

EC

=   BQ

BC

=   FR

FC

, т. е. точка S

4,6(66 оценок)
Ответ:
olgap51olga
olgap51olga
16.05.2023
Сумма углов параллелограмма, прилежащих к одной стороне, = 180 градусов
А + В = 180
биссектрисы делят углы пополам...
А/2 + В/2 = 90 => треугольник АВК прямоугольный и угол АКВ = 90 градусов...
т.к. углы В и D равны, то треугольник АКD будет равнобедренным и 
AD=DK (угол АКD = 180-В-А/2 = А-А/2 = А/2 = KAD)))
аналогично окажется равнобедренным и треугольник ВСК
угол ВКС = 180-С-В/2 = 180-А-В/2 = В-В/2 = В/2 = CВК => ВС=СК
2*(АВ+ВС) = 45 = 2*(DC+BC) = 2*(DK+KC+BC) = 2*(AD+BC+BC) = 6*BC
BC = 45/6 = 7.5
AB = DC = DK+KC = AD+BC = 2*BC = 15
запишем разность периметров треугольников BCK и ADK:
BC+CK+KB - (AD+DK+KA) = 3
KB = 3+KA
по т.Пифагора AB^2 = AK^2 + BK^2
225 = AK^2 + (3+AK)^2 = 2*AK^2 + 6*AK + 9
AK^2 + 3*AK - 108 = 0
AK = 9
BK = 12
4,4(74 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ