12. Векторы коллинеарны, если их координаты пропорциональны, т.е. 2/α=3/(-6)=(-4)/8⇒α=-4
Верный ответ Г)
13. Скалярное произведение векторов равно 25, т.к. это сумма произведений соответствующих координат. 2*3+4*5+1*(-1)=25
2) У середины отрезка АВ апликата равна (7-1)/2=3
ответ А1),2).
3) не верно, т.к. произведение должно равняться нулю при условии, что векторы перпендикулярны, но все координаты не могут быть положительными, чтобы сумма их соотв. произведений равнялась нулю.
14. Возведем в квадрат длину вектора. α²+α²+1+4α+4=21
2α²+4α-16=0
α²+2α-8=0, α=-4, α=2. Это по теореме, обратной теореме Виета.
ответ А, В
12. Векторы коллинеарны, если их координаты пропорциональны, т.е. 2/α=3/(-6)=(-4)/8⇒α=-4
Верный ответ Г)
13. Скалярное произведение векторов равно 25, т.к. это сумма произведений соответствующих координат. 2*3+4*5+1*(-1)=25
2) У середины отрезка АВ апликата равна (7-1)/2=3
ответ А1),2).
3) не верно, т.к. произведение должно равняться нулю при условии, что векторы перпендикулярны, но все координаты не могут быть положительными, чтобы сумма их соотв. произведений равнялась нулю.
14. Возведем в квадрат длину вектора. α²+α²+1+4α+4=21
2α²+4α-16=0
α²+2α-8=0, α=-4, α=2. Это по теореме, обратной теореме Виета.
ответ А, В
Только ответы без решения правилами Сервиса давать не разрешается.
1)В прямоугольном параллепипеде стороны основания равны 12см и 16см,а периметр диагонального сечения равен 70см.
Найти диагональ параллепипеда.
Периметр диагонального сечения = сумма двух диагоналей и двух высот.
Диагональ d основания находим по т.Пифагора:
d=√(12²+16²)=20 см
Высоту Н параллелепипеда найдем из периметра диагонального сечения:
2d+2Н=70 см
2Н=70-40=30 см
Н=30:2=15 см
Диагональ D параллелепипеда - это диагональ прямоугольника - даигональ сечения.
D=√(H²+d²)=25 см
2)Найти площадь поверхности правильной четырехугольной пирамиды, высота которой равна 15дм, а апофема 17дм
В основании этой пирамиды - квадрат.
В него можно вписать окружность,
радиус ее равен половине стороны квадрата и перпендикулярен стороне основания, касается её в точке основания апофемы.
Центр вписанной окружности - основание высоты пирамиды.
Треугольник, образованный высотой, апофемой и радиусом вписанной окружности - прямоугольный, где апофема - гипотенуза.
r=√(17²-15²)=8
Сторона квадрата =2r=16 см
Площадь поверхности правильной четырехугольной пирамиды -
сумма площадей основания и боковой поверхности.
Площадь основания
Sосн=16²=256 дм²
Sбок=Р*апофема:2=64*17:2=544 дм²
Sполн=256+544=800 дм²