за Бенедикта Камбербэтча :)))
У вписанной в квадрат окружности диаметр равен стороне. Поэтому длинна окружности равна числу пи, умноженному на сторону. То есть 8*pi.
То, что центр вписанной окружности равноудален от всех 4 сторон, означает, что он совпадает с центром квадрата (просто центр квадрата, он же - точка пересечения диагоналей, равноудален от всех сторон, а двух таких точек не может быть (потому что не может быть никогда:), на самом деле легко показать, что любая другая точка в квадрате НЕ равноудалена от сторон, всё это выходит за рамки задачи - это просто немного теории). Далее, прямая, соединяющая точки касания, является диаметром (перпендикуляр к касательной всегда пройдет через центр окружности) и равна по длине стороне, поскольку это просто перпендикуляр к стороне через её середину. Напомню, что все стороны квадрата равны между собой :))) По-моему, объяснений довольно. :)
Пирамида MABCD, основание - прямоугольник ABCD: AD=BC=18 см; AB=CD=10 см; O- точка пересечения диагоналей AС и BD, MO - высота пирамиды. Так как у прямоугольника диагонали равны и точкой пересечения делятся пополам, то OA = OB = OC = OD - это проекции боковых ребер на основание. Проекции наклонных равны, следовательно, наклонные тоже равны : AM = BM = CM = DM - боковые ребра пирамиды. Тогда ΔAMD = ΔBMC - по трём равным сторонам, ΔAMB = ΔDMC - по трём равным сторонам. Проведем KT║AD ⇒ OK=OT=AD/2 = 18/2 = 9 смΔMOT - прямоугольный, теорема ПифагораMT² = MO² OT² = 12² 9² = 144 81=225 = 15²MT = 15 см см²Проведем FG║DC ⇒ OG=OF=DC/2 = 10/2 = 5 смΔMOF - прямоугольный, теорема ПифагораMF² = MO² OF² = 12² 5² = 144 25 = 169 = 13²MF = 13 см см²Площадь боковой поверхности пирамиды см²Sбок = 384 см²Площадь основания см²Площадь полной поверхности пирамиды S = 384 180 = 564 см²