В правильном тетраэдре все грани - равные равносторонние треугольники.
Площадь одной грани:
S₁ = a²√3/4 = 4²√3/4 = 4√3 см²
Так как К - середина DC, то АК = ВК - медианы и высоты равных треугольников DAC и DBC. Тогда
Sakd = Sbkd = 1/2 S₁ = 2√3 см² - это площади двух боковых граней пирамиды KABD.
Пусть Н - середина АВ, так как треугольник АКВ равнобедренный, то КН - его высота.
СН = DH = а√3/2 = 4√3/2 = 2√3 см как медианы и высоты равных равносторонних треугольников.
Тогда ΔDHC равнобедренный, КН - его медиана и высота:
КН⊥CD.
ΔСКН: ∠СКН = 90°, СН = 2√3 см, СК = CD/2 = 2 см, по теореме Пифагора
КН = √(CH² - CK²) = √((2√3)² - 2²) = √(12 - 4) = √8 = 2√2 см
Sabk = 1/2 AB · KH = 1/2 · 4 · 2√2 = 4√2 см²
Площадь боковой поверхности пирамиды KABD:
Sбок = Sakd + Sbkd + Sabk = 2√3 + 2√3 + 4√2 = 4(√3 + √2) см²
Каждое боковое ребро составляет с плоскостью основания угол в 45° - следовательно, все ребра равны, а их проекции равны радиусу описанной около основания пирамиды окружности, Основание высоты пирамиды - центр О описанной окружности. . Величина её радиуса АО равна 2/3 высоты основания.
AH=AB•sin60°=4√3/2=2√3
Высота МО перпендикулярна основанию
∆АМО - прямоугольный, острый угол МАО=45°, следовательно, второй АМО=45°, и высота пирамиды МО=АО=4/√3
Формула объёма пирамиды V=S•h:3
S(∆ABC)=AB²•√3/4=16√3/4=4√3