Достраиваем усеченный конус до нормального) проводим высоту и делаем еще один чертеж прямого труегоника рядом угол С - прямой А - вершина конуса и вершина этого прямоугольного треугольника угол В = 60 градусов по дано
К и Н концы отрезка бывшего ранее меньши радиусом
рассмотрим треугольники АКН и АВС они подобны по 3 углам пишем пропорцию подобия АН/AB=KH/CB=1/3 получается что АВ=12 так как АН=4 а АН равно 4 так как сторона КН лежит против угла в 30 градусов
ура, мы нашли образующую! она 12
высота из пифагора 12^2=6^2-x^2 x=корень из 108 но нам нужна высота усеченного подобие доказали им и воспользуемся значит высота равна=корень из 108 разделить на 3 и умножить на 2=48
Объяснение:
Дана правильная треугольная пирамида. Её высота Н равна a√3, радиус окружности, описанной около её основания, равен 2a.
Найти: а) апофему А пирамиды.
Радиус R окружности, описанной около её основания, равен 2/3 высоты основания, то есть R = в√3/3, где в - сторона основания.
Находим сторону основания: в = R/(√3/3) = R√3 = 2a√3.
Отсюда апофема равна: А = √(Н² + (R/2)²) = √(3a² + a²) = √4a² = 2a.
Величина R/2 равна 1/3 высоты основания или радиусу вписанной окружности в основание.
б) угол α между боковой гранью и основанием равен:
α = arc tg(H/(R/2)) = arc tg(a√3/a) = arc tg√3 = 60 градусов.
в) площадь Sбок боковой поверхности.
Периметр основания Р = 3в = 3*2a√3 = 6a√3.
Sбок = (1/2)РА = (1/2)*(6a√3)*2а = 6a²√3 кв.ед.
г) плоский угол γ при вершине пирамиды(угол боковой грани).
γ = 2arc tg((в/2)/А) = 2arc tg((2а√3/2)/2а) = 2arc tg(√3/2) ≈ 1,42745 радиан или 81,7868 градуса.