Обозначим вершины треугольника А, В, С, причем АВ=ВС.
Т.к. ∆ АВС - равнобедренный, высота ВН, проведенная к основанию, является медианой, и, следовательно, ВН - срединный перпендикуляр. Точка пересечения срединных перпендикуляров треугольника - центр описанной вокруг него окружности.
Расстояние от О до вершин А, В и С равно радиусу. R=ВО=СО=17 см.
∆ СОН - прямоугольный, его гипотенуза и один из катетов - из Пифагоровых троек ( 8, 15,17), ⇒, НС=15 см ( проверьте по т.Пифагора).
Отсюда АС=2•15=30 см
По т.Пифагора AB=ВС=√(BH*+CH*)=√(625+225)=√850=5√34 см
Р=30+2•5√34=10•(3+√34) см
S=BH•CH=375 см²
Если некоторая прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.
Через две пересекающиеся прямые можно провести плоскость, притом только одну. Чтобы третья прямая не пересекалась ни с одной из них, она должна лежать в другой плоскости, т.е. или быть параллельна плоскости, или пересекать эту плоскость ( иметь с плоскостью одну общую точку).
На рисунке приложения прямые а и b пересекаются, прямая с параллельна плоскости, прямая m пересекает плоскость.