у рівнобічній трапеції ABCD з основою AD, BC = 4см, кут BCD = 30 градусів, кут BDA = 45 градусів. знайдіть радіус кола, описаного навколо трапеції та її бічну сторону
1)Треугольник АВС, АВ=25, ВС=29, АС=36, высоты ВН, АМ, СТ, вершина угол В cosВ = (АВ в квадрате + ВС в квадрате - АС в квадрате) / 2 х АВ х ВС= = (625 +841 - 1296) / (2 х 25 х 29) =0,1172 - угол 83 =уголВ , sin 83 (В)= 0,9925 АС/sinВ = АВ/sinС, 36/0,9925=25/sinС, sinС = 0,6892 АС/sinВ = ВС/sinА, 36/0,9925=29/sinА, sinА = 0,7995 ВН = АВ х sinА = 25 х 0,7995 =20 СТ = АС х sinА = 36 х 0,7995 = 28,8 АМ = Ас х sinС = 36 х 0,6892 = 24,8 Найменьшая высота проведена на большую сторону АС
Если найдена одна высота остальные можно искать через отношение ha : hb = (1/a) : (1/b)
Лично я бы доказывал это так. Вокруг треугольника можно описать окружность. В ней все углы - это вписанные углы. Каждая из сторон соответствует хорде. Большей хорде соответствует (в этой окружности) большая дуга - это очень легко доказать поворотом вокруг центра. (Надо так повернуть одну из хорд вокруг центра окружности, чтобы две хорды стали параллельны. И сразу видно, что большая хорда стягивает большую дугу) Поэтому угол треугольника, лежащий напротив большей стороны опирается на большую дугу. Остается вспомнить, как связаны вписанный угол и дуга, на которую он опирается.
cosВ = (АВ в квадрате + ВС в квадрате - АС в квадрате) / 2 х АВ х ВС=
= (625 +841 - 1296) / (2 х 25 х 29) =0,1172 - угол 83 =уголВ , sin 83 (В)= 0,9925
АС/sinВ = АВ/sinС, 36/0,9925=25/sinС, sinС = 0,6892
АС/sinВ = ВС/sinА, 36/0,9925=29/sinА, sinА = 0,7995
ВН = АВ х sinА = 25 х 0,7995 =20
СТ = АС х sinА = 36 х 0,7995 = 28,8
АМ = Ас х sinС = 36 х 0,6892 = 24,8
Найменьшая высота проведена на большую сторону АС
Если найдена одна высота остальные можно искать через отношение
ha : hb = (1/a) : (1/b)