Данное решение для первой четверти. Для остальных четвертей решение аналогичное
AB = 5√2; OA = OB - по условию ΔOAB - прямоугольный равнобедренный Теорема Пифагора OA² + OB² = AB² ⇒ 2OA² = AB² 2OA² = (5√2)² 2OA² = 50 ⇒ OA² = 25 ⇒ OA = OB = 5 Координаты точек А (0; 5), В (5; 0) Уравнение прямой y = kx+b Для точки А: 5 = k*0 + b; b = 5 Для точки В: 0 = k*5 + b; 5k = -b; k = -b/5; k = -5/5 = -1
Уравнение прямой для первой четверти y = -x + 5 Уравнение прямой для второй четверти y = x + 5 Уравнение прямой для третьей четверти y = -x - 5 Уравнение прямой для четвертой четверти y = x - 5
Теорема 1 ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.
Доказательство: Пусть а прямая, перпендикулярная прямым b и c в плоскости . Тогда прямая а проходит через точку А пересечения прямых b и c. Докажем, что прямая а перпендикулярна плоскости . Проведем произвольную прямую х через точку А в плоскости и покажем, что она перпендикулярна прямой а. Проведем в плоскости произвольную прямую, не проходящую через точку А и пересекающую прямые b, c и х. Пусть точками пересечения будут В, С и Х. Отложим на прямой а от точки А в разные стороны равные отрезки АА1 и АА2. Треугольник А1СА2 равнобедренный, так как отрезок АС является высотой по условию теоремы и медианой по построению (АА1=АА2). по той же причине треугольник А1ВА2 тоже равнобедренный. Следовательно, треугольники А1ВС и А2ВС равны по трем сторонам. Из равенства треугольников А1ВС и А2ВС следует равенство углов А1ВХ и А2ВХ и, следовательно равенство треугольников А1ВХ и А2ВХ по двум сторонам и углу между ними. Из равенства сторон А1Х и А2Х этих треугольников заключаем, что треугольник А1ХА2 равнобедренный. Поэтому его медиана ХА является также высотой. А это и значит, что прямая х перпендикулярна а. По определению прямая а перпендикулярна плоскости . Теорема доказана.
отрезки которая делить СН и есть среднее геометрическое между ними то есть
CH^2=AH*HB значит
6^2=3*HB
HB=12
ответ гипотенуза равна 12+3=15 см