№1. Найдите радиус окружности, вписанной в треугольник, и радиус окружности, описанной около треугольника, стороны которого равны 15 см, 16 см и 17 см.
1) Вот рисунок 1. Углы при основании равнобедренного треугольника a. Угол при вершине b. Биссектриса разбивает угол при основании на два угла a/2. И она пересекает сторону под углом α. Получается треугольник ABD, у которого углы равны a, a, a/2. a + a + a/2 = 180° 2a + 2a + a = 360° 5a = 360° a = 360°/5 = 72° b = 180° - a - a = 180° - 72° - 72° = 36°. ответ: 72°, 72°, 36°.
2) а) Пусть две биссектрисы выходят из основания треугольника. Тогда основание и биссектрисы образуют маленький треугольник, у которого тупой угол 135°. Тогда сумма двух остальных углов равна 180° - 135° = 45°. Но ведь эти углы - есть половины углов большого треугольника. Значит, эти два угла большого треугольника в сумме равны 2*45° = 90°. Значит, третий угол большого треугольника равен 90°, то есть прямой. Таким образом, большой треугольник - прямоугольный.
б) Пусть острый угол пересечения биссектрис равен а, тогда тупой 180°-а. Значит, сумма углов в маленьком треугольнике b1 + b2 = 180° - (180° - а) = а. Но эти маленькие углы есть половины от углов большого треугольника. Поэтому сумма двух углов большого треугольника равна 2а. 2*b1 + 2*b2 = 2a Значит, третий угол большого треугольника равен 180° - 2а. А внешний угол к этому углу равен, соответственно, 2а. То есть вдвое больше, чем острый угол а между биссектрисами.
Оба случая - а) и б) - показаны на 2 рисунке. Для случая а) тупой угол между биссектрисами 180° - a = 135°.
1) Для начала построим данное сечение: Для построения сечения требуется построить точки пересечения секущей плоскости с рёбрами и соединить их отрезками: а) Можно соединять только две точки, лежащие в плоскости одной грани. Точки В и С лежат в одной плоскости, значит, соединяем эти точки и получаем отрезок ВС, но ВС уже построен в ходе построения прямой призмы. Точки В и К лежат в одной плоскости → получаем отрезок ВК б) Секущая плоскость пересекает параллельные грани по параллельным отрезкам. Грани ВВ1С1С и АА1D1D параллельны В противном случае эти грани пересекались бы, что противоречит условию: ВС || AD , B1C1 || A1D1 ( по свойству трапеции АВСD и A1B1C1D1 ) Через точку К проводим прямую, паралельную прямой ВС → получаем точку L. Но также ВС || KL, BC || AD → AD || KL || A1D1 ( AD = KL = A1D1 = 4 см ) и АК = КА1. Значит, DL = LD1 ( AK = KA1 = DL = LD1 ) Точки C и L лежат в одной плоскости → получаем отрезок CL
Из этого следует, что четырёхугольник BCLK – данное по условию сечение.
АВСD – равнобедренная трапеция → АВ = CD Боковые рёбра прямой призмы равны: АА1 = ВВ1 = СС1 = DD1 Значит, прямоугольники АВВ1А1 и CDD1C1 равны. Соответственно равны и отрезки ВК и CL. Следовательно, сечение BCLK – равнобедренная трапеция ( ВС || КL, BK = CL )
2) В трапеции АВСD опустим высоту АМ на ВС. По свойству прямой призмы КА перпендикулярен плоскости АВС, в которой лежит проекция АМ наклонной КМ. Значит, по теореме о трёх перпендикулярах КМ перпендикулярен ВС. Из этого следует, что угол АМК – линейный угол двугранного угла АВСК, то есть угол АМК = 60°.
3) Площадь трапеции BCLK равна: S bclk = 1/2 × ( KL + BC ) × KM 48 = 1/2 × ( 4 + 8 ) × КМ 48 = 6 × КМ КМ = 8 см
Рассмотрим ∆ АМК (угол КАМ = 90°): cos AMK = AM/KM AM= KM × cos AMK = 8 × cos60° = 8 × 1/2 = 4 см По теореме Пифагора: КМ² = АМ² + АК² АК² = 8² – 4² = 64 – 16 = 48 АК = 4√3 см АА1 = 2 × AK = 2 × 4√3 = 8√3 см
Обьём прямой призмы рассчитывается по формуле: V ( призмы ) = S осн. × h
V ( призмы ) = S abcd × AA1 = 1/2 × ( AD + BC ) × AM × AA1 = 1/2 × 12 × 4 × 8√3 = 192√3 см²
Угол при вершине b.
Биссектриса разбивает угол при основании на два угла a/2.
И она пересекает сторону под углом α. Получается треугольник ABD, у которого углы равны a, a, a/2.
a + a + a/2 = 180°
2a + 2a + a = 360°
5a = 360°
a = 360°/5 = 72°
b = 180° - a - a = 180° - 72° - 72° = 36°.
ответ: 72°, 72°, 36°.
2) а) Пусть две биссектрисы выходят из основания треугольника.
Тогда основание и биссектрисы образуют маленький треугольник, у которого тупой угол 135°. Тогда сумма двух остальных углов равна
180° - 135° = 45°.
Но ведь эти углы - есть половины углов большого треугольника.
Значит, эти два угла большого треугольника в сумме равны 2*45° = 90°.
Значит, третий угол большого треугольника равен 90°, то есть прямой.
Таким образом, большой треугольник - прямоугольный.
б) Пусть острый угол пересечения биссектрис равен а, тогда тупой 180°-а.
Значит, сумма углов в маленьком треугольнике
b1 + b2 = 180° - (180° - а) = а.
Но эти маленькие углы есть половины от углов большого треугольника.
Поэтому сумма двух углов большого треугольника равна 2а.
2*b1 + 2*b2 = 2a
Значит, третий угол большого треугольника равен 180° - 2а.
А внешний угол к этому углу равен, соответственно, 2а.
То есть вдвое больше, чем острый угол а между биссектрисами.
Оба случая - а) и б) - показаны на 2 рисунке.
Для случая а) тупой угол между биссектрисами 180° - a = 135°.