Для построения графика нужна таблица координат точек.
Подставляя значения "х" с шагом 0,25 рассчитываем значения
у = +-√х.
х у
0 0 0
0,25 0,5 -0,5
0,5 0,707106781 -0,707106781
0,75 0,866025404 -0,866025404
1 1 -1
1,25 1,118033989 -1,118033989
1,5 1,224744871 -1,224744871
1,75 1,322875656 -1,322875656
2 1,414213562 -1,414213562
2,25 1,5 -1,5
2,5 1,58113883 -1,58113883
2,75 1,658312395 -1,658312395
3 1,732050808 -1,732050808
3,25 1,802775638 -1,802775638
3,5 1,870828693 -1,870828693
3,75 1,936491673 -1,936491673
4 2 -2
abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad
тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;
пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y
площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy
выразим через s площади befc и aefd.
площадь aefd равна сумме площадей aofd и aeo.
рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd равна разности площадей acd и ocf:
6xy-3/8*xy=45/8*xy
рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy
площадь befc равна разности площадей abcd и aefd:
8xy-27/4*xy=5/4*xy
s(befc): s(aefd)=5/4*xy: 27/4*xy=5: 27
Решение:
Куб - прямоугольный параллелепипед.
Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Диагональ куба d=6.
d² = 3а²
3a²=36
a²=12 ⇒
a=2√3
Найдена длина ребра куба.
Смотрим данный во вложении рисунок:
Диагональ октаэдра равна длине ребра куба.
Ребро октаэдра
ab=cd равно ос*√2=√3 *√2=√6
Формула объема октаэдра
V=(а³√2):3
V=(√6)³√2):3=6√12):3=2*2√3=4√3
-----------------------------------------------
Но можно объем вычислить последовательно по действиям, найдя сторону октаэдра, расстояние от вершин до центра и затем найденный по формуле объема правильной четырехугольной пирамиды
V=Sh:3 результат умножить на два.
ответ будет одинаковым.