Задание 1 - ответ: А) 120 см².
Задание 2 - ответ: Г) d sin α
Задание 3 - ответ: В) 432
Объяснение:
Задание 1.
Площадь боковой поверхности четырехугольной призмы равна произведению периметра основания на длину бокового ребра.
Так как четырёхугольная призма является правильной, то в её основании лежит квадрат, периметр которого равен:
P = 4 * 6 = 24 см.
Отсюда площадь боковой поверхности призмы:
Sб = 24 * 5 = 120 см²
ответ: А) 120 см².
Задание 2.
В прямоугольном треугольнике, образованном диагональю, боковым ребром и проекцией диагонали на плоскость основания, боковое ребро является катетом, лежащим против угла α, а диагональ d является гипотенузой.
Катет равен произведению гипотенузы на синус угла, противолежащего этому катету, то есть:
Боковое ребро = d sin α
ответ: Г) d sin α
Задание 3.
В основании правильной четырёхугольной пирамиды лежит квадрат, а проекцией вершины пирамиды является центр квадрата основания, в силу чего все 4 боковые грани по площади равны между собой.
Каждая из четырёх боковых граней представляет из себя равнобедренный треугольник со стороной основания 18 см и двумя боковыми сторонами по 15 см.
Находим по теореме Пифагора высоту этого треугольника:
h = √ [(15² - (18/2)²] = √ (225 - 81) = √144 = 12 см
Площадь одного треугольника - это одна-вторая произведения основания на высоту:
(18 * 12): 2 = 216 : 2 = 108 см².
Площадь 4-х таких треугольников:
108 * 4 = 432 см².
ответ: В) 432
Объяснение:
З_1) Только арифметикой будешь заниматься самостоятельно.!
А(-3; 4; 1)
В( 5; -2; -3)
|АВ| = √[(5-(-3)^2+(-2-4)^2+(-3-1)^2]
|АВ| = √[8^2+(-6)^2+(-4)^2] = ...
M ( х=[5+(-3)]/2;. у=(-2+4)/2;. z=[-3+1]/2 )
M (1; 1; -1). O( 0; 0; 0)
|OM| =√(1^2+1^2+1^2) = √3
Зaд_2).
А ( -1; 2; 2)
В ( 1;. О; 4)
С ( 3; -2; 2)
|АВ| = √[(-1-1)^2+(2-0)^2+(2-2)^2]= =√(4+4+0)=2√8
|ВС| = √[(1-3)^2+(0-(-2))^2+(4-2)^2=
= √(4+4+4)= 2√3
|АС| = √[(-1-3)^2+(-2-2)^2+(2+2)^2=
= √[(16+16+0)]= 4√2
S∆ = √{p(p-AB)(p-BC)(p-AC)}
p = (AB+BC+AC)/2
Р = АВ+ВС+АС
(СА) = (-4; 4; 0)
(СВ) = (-2; 2; 2)
Середина. СВ. ( 2; -1; 3)
Середина. АВ. ( О; 1; 3)
Угол ВАС. =<A
Соs(<BAC)=
Cos<A = (AC^2+AB^2-BC^2)/2AC*AB
Подставить и посчитаешь
Использую два вида скобок ,чтобы один вид не сливался с другим, и только для того, чтобы выполнить в начале сложение а затем извлечь корень.
В задаче предполагается два решения, в зависимости от того, какую из сторон развёртки считать длиной прямоугольника, а какую-шириной.
1.Длина равна 15 см, а ширина 9 см.
Тогда в основании правильной призмы лежит правильный треугольник со стороной 15:3=5(см)
Площадь его равна 5^2 * sqrt{3}/4=25sqrt{3]/4(см кв)
Высота призмы равна 9 см.
Объём равен V=S*H=25sqrt{3}/4 * 9=225sqrt{3}/4(см куб)
2.Длина равна теперь 9 см, а ширина 15 см
Тогда в основании правильной призмы лежит правильный треугольник со стороной 9:3=3(см)
Площадь его равна 3^2 * sqrt{3}/4=9sqrt{3]/4(см кв)
Высота призмы равна 15 см.
Объём равен V=S*H=9sqrt{3}/4 * 15=135sqrt{3}/4 (см куб)