Ас=16
Объяснение
Дан прямоугольный треугольник САВ ,СВ=24,С=90° tgA=1,5
АВ-гипотенуза
СВ- противолежащий катет к углу А.
АС-прилежащий катет к углу А.
По определению тангенса:
tgA=СВ/АС
1,5 =24/АС⇒
АС=24/1,5=16
△ABC;
А(2;-2;2), В(0;2;0), С(0;0;-2).
Найти:P△ABC = ?
Решение:Чтобы найти периметр треугольника, нужно найти расстояния от точек, из которых состоит данный треугольник.
Расстояние от точки А до В - длина АВ.
Расстояние от точки В до С - длина ВС.
Расстояние о точки А до С - длина АС.
Вычисляется это расстояние следующим образом:
d - расстояние.
d = √((В(х) - A(x))² + (B(y) - A(y))² + (B(z) - A(z))²).
Сейчас показала формулу на примере нахождения расстояния от точки А до В.
Сделаем также, только представляю вместо значения х, у и z, данные значения:
d = √((0 - 2)² + (2 - (-2))² + (0 - 2)²) = √(4 + 16 + 4) = √24 = 2√6 - длина АВ.
d = √((0 - 0)² + (0 - (-2))² + (-2 - 0)²) = √(0 + 4 + 4) = √8 = 2√2 - длина ВС.
d = √((0 - 2)² + (0 - (-2))² + (-2 - 2)²) = √(4 + 4 + 16) = √24 = 2√6 - длина АС.
Вывод: этот треугольник - равнобедренный, так как АВ = АС = 2√6
P = a + b + c = 2√6 + 2√6 + 2√2 = 4√6 + 2√2 = 2√2 ⋅ (2√3 + 1)
ответ: 2√2 ⋅ (2√3 + 1).1) нарисуй треугольник ABC, где - AB -твой отрезок, BC -перпендикулярно плоскости, AC - параллельно плоскости, далее дорисуй его до прямоугольника добавив точку K, тем самым получив диагональ KC.
точка A удалена на 2,4 м, точка B удалена на 7,6 м
длина BC равна 7,6 - 2,4 = 5,2
в прямоугольнике точка пересечения диагоналей будет точкой М и расстояние от точки M до стороны AC будет равно половине длины стороны BC, то есть 5,2 / 2 = 2,6
тогда искомое расстояние равно 2,6 + 2,4 = 5 м
2) рисуем аналогично треугольник, длина стороны параллельной столбам равна разности 6 - 3 = 3 м, далее по теореме Пифагора - 5^2 = 3^2 + x^2
отсюда, x^2 = 25-9 = 16, х = 4
3) тут долго объяснять, смотри выше)
Успехов!
ответ: АС = 16
Объяснение: