Вокружности проведены три попарно пересекающиеся хорды равной длины. каждая хорда разделена точками пересечения на три части равной длины. найти радиус окружности, если длина каждой из хорд равна а
Надо вычислить расстояние от центра до хорды (все равно какой). Ясно, что треугольник, вершины которого - точки пересечения хорд - правильный. Ясно и то, что центр этого треугольника совпадает с центром окружности. Но - заодно - это центр вписанной в этот треугольник окружности. В правильном треугольнике радиус вписанной окружности равен трети высоты, то есть корень(3)/6 от стороны, а сторона ЭТОГО треугольника а/3.
Итак, есть хорда длины а, отстоящая от центра на расстояние а*корень(3)/18.
R^2 = (a/2)^2 + (а*корень(3)/18)^2 = a^2*7/27; R = a*корень(21)/9
Проведём радиусы ОА и ОД окружности описанной около треугольника АDF(смотри рисунок). Угол АОД окружности (на рисунке не показана)-центральный, а АFД –вписаный. Но они оба опираются на одну дугу АД. То есть угол АОД в два раза больше угла АFД(условно обозначен 1).Треугольник АОД- равнобедренный(АО и ОД радиусы), высота ОЕ делит угол АОД пополам. Отсюда угол ОАЕ=90-угол1. Далее- угол СВД равен углу АFВ как накрест лежащие поскольку АF параллельна ВС. Но угол СВД равен углу САД поскольку они оба опираются на дугу СД. Тогда угол ОАС =угол САД+ угол ОАД=угол1+угол90-угол1=90градусов. То есть радиус ОА окружности описанной около АДF перпендикулярен АС. А это значит , что окружность касается этой прямой
У параллелограмма противоположные углы равные а) сума двух соседних углов 180 градусов пусть I угол = х, тогда II второй угол = х+40 их сума 180 градусов выходит уравнение : х+х+40 градусов = 180 градусов 2х+40 = 180 2х=140 х=70 градусов I угол = 70 градусов, тогда II угол = х+40=110 градусов так как противоположные углы равные, значит противоположный угол І угла равняется ему, тоесть он тоже 70 градусов а противоположный ІІ угла равняется ему , тоесть он тоже 110 градусов в) пусть I угол =х, тогда II = 5х опять же сумма их 180 градусов уравнение : х+5х=180 6х=180 х=30 градусов получается І угол у нас 30 градусов, тогда ІІ угол = 5х = 150градусов и опять противоположные, противоположный І угла равняется ему, равняется 30 градусов а противоположный ІІ тоже равняется ему, тоесть 150 градусов
Надо вычислить расстояние от центра до хорды (все равно какой). Ясно, что треугольник, вершины которого - точки пересечения хорд - правильный. Ясно и то, что центр этого треугольника совпадает с центром окружности. Но - заодно - это центр вписанной в этот треугольник окружности. В правильном треугольнике радиус вписанной окружности равен трети высоты, то есть корень(3)/6 от стороны, а сторона ЭТОГО треугольника а/3.
Итак, есть хорда длины а, отстоящая от центра на расстояние а*корень(3)/18.
R^2 = (a/2)^2 + (а*корень(3)/18)^2 = a^2*7/27; R = a*корень(21)/9