task/29640004 Напишите уравнение прямой, проходящей через две данные точки: С(2;5) и D(5;2) .
y = k*x +b → уравнение прямой
y₁ =k*x₁ +b → условие (прямая проходит через точку A(x ₁ ; y₁ ) ;
y - y₁= k*(x -x₁) → уравнение прямой , проход. через точку A(x ₁ ; y₁ ) ;
y₂ - y₁= k*(x₂ -x₁) → условие (прямая проходит через точку B(x₂ ;y₂ ) ;
уравнение прямой , проход. через две точки A(x ₁ ; y₁ ) и B(x₂ ;y₂) :
(y - y₁) / (y₂ - y₁)=(x -x₁) / (x₂ - x₁) .
(y - 5) / (2 - 5)=(x -2) / (5 - 2 ) ⇔ y - 5= - (x -2) ⇔ y = - x +7 .
ответ : y = - x +7 .
Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.