в равнобедренной трапеции диагональ является биссектрисой острого угла найдите площадь трапеции если боковая сторона равна 17 см а большее основание 33 см
Точка О-середина оси цилиндра. Диаметр основания цилиндра виден из точки О под прямым углом, а расстояние от точки О до точки окружности основания цилиндра равно 2 см. Вычислите объем цилиндра. Объем цилиндра равен произведению площади его основания на высоту. V=SH Все нужные измерения найдем с т. Пифагора. Точка О - вершина прямого угла равнобедренного прямоугольного треугольника АОВ с катетами АО=ОВ=2 см АВ - гипотенуза этого треугольника=диаметру основания и по т.Пифагора равна 2√2, следовательно, радиус основания цилиндра (2√2):2=√2 СО- половина высоты цилиндра СН и равна радиусу основания, т.к. ОС - медиана треугольника АОВ и по свойству прямоугольного треугольника равна половине АВ, => СО= АС=√2. Высота цилиндра СН =СО*2=2√2 V=SH=π(√2)²*2√2=4π√2 см³
Проведем высоту из 2ого угла при основании... высоты будут пересекаться под углом в 90 по теореме: точка пересечения высот делит их в отношении 2:1 получаем равноб треугольник с основание и сторонами в 4 см дальше находим основание по теореме пифагора, оно равно 2корня из 2 площадь маленького треугольника= 8 см высота из вершины маленького треуг= 4 корня из 2 вспоминая вышепреведенную теорему получаем, что высота из вершины большого теругольника = 12корней из 2 площадь= 2корня из 2 * 4 корня из 2= 48 см^2
Пусть ABCD равнобедренная трапеция
AD и BC основания трапеции ( AD || BC ) AD =33 см ,
ВA = CD =17 см и ∠ BAC = ∠ DAC .
S(ABCD) = h*(AD+BC)/2 -?
∠ BCA= ∠ DAC как накрест лежащие углы ( BC || AD , CA секущая) ,
следовательно ∠ BCA= ∠ DAC =∠ BAC , т.е. ΔBAC равнобедренный
BA = BC =17 см получили BA = CD =17 см .
Проведем BB₁ ⊥ AD и CC₁ ⊥ AD . BCC₁B₁ _прямоугольник BB₁ =CC₁
B₁C₁ = BC =17 см ; Δ BB₁A = Δ CC₁D(гипотен. BA= CD и катеты BB₁ =CC₁).
AB₁ =(AD - BC)/2 =(33 - 17)/2 см=8 см .
Из Δ BB₁A по теореме Пифагора:
BB₁ =√(BA² -AB₁² ) =√(17² -8)² =√(289 -64) =√225=15 (см) .
* * * h=√(17²-8)² =√(17 -8)(17 +8) =√(9*25)=15 * * *
S(ABCD) = h*(AD+BC)/2 =15(33+17)/2 =15*25 = 375 (см²).
Удачи♥️