В данном случае площадь основания пирамиды вычислить легко по формуле площади треугольника
Теперь надо найти высоту пирамиды. Сделать это непросто. Так как нужно узнать: где находится основание высоты пирамиды.
Пусть SO - высота пирамиды. АВС - треугольник в основании пирамиды. Рассмотрим 3 треугольника SOA, SOB, SOC. Все эти треугольники прямоугольные. Так как SO перпендикулярно плоскости основания, а значит перпендикулярно любой прямой в плоскости основания. Далее, SO - общий катет этих прямоугольных треугольников. SA=SB=SC=8 - по условию задачи. Значит эти треугольники равны по катету и гипотенузе. Поэтому другие катеты равны тоже между собой OA=OB=OC. Точка О - является центром описанной окружности. Так как расстояние от точки до любой вершины треугольника АВС одно и то же. Найти радиус описанной окружности можно по разным формулам. Можно воспользоваться следующей формулой
Здесь a, b, и c - стороны треугольника АВС.
Две стороны нам известны. Надо найти третью сторону треугольника АВС.
Найдем ее по теореме косинусов
c=7
Значит третья сторона треугольника равна 7.
Подставляем в формулу (*)
Нашли катет прямоугольного треугольника, образованного высотой пирамиды, боковым ребром и стороной, лежащей в основании пирамиды.
Теперь нам известны гипотенуза прямоугольного треугольника (это боковое ребро пирамиды 8), катет (это радиус описанной окружности треугольника АВС, 7). Осталось найти другой катет (высоту пирамиды). По теореме Пифагора
1. Решение: Рассмотрим треугольник АВE: В этом трeугольнике угол EАК равен углу EАD, т.к. АE-биссектриса. Но угол EАD равен также углу ВEА - как накрест лежащие углы при пересечении 2-ух параллельных прямых ВС и АD секущей АE. Следовательно угол ВАE равен углу ВEА, а значит треугольник ВАEравнобедренный отсюда следует, что АВ=ВE=7. Т.к. АВСD-параллелограмм, то АВ=СD=7, ВС=АD=21.Найдем периметр параллелограмма: АВ+ВС+СD+АD=7+21+7+21= 56 см. 2. Решение: Дано: ABCD - ромб Доказать: ABCD - параллелограмм Доказательство: ABCD - ромб , следовательно AB=BC=CD=AD угол А = угол С = 90 градусов угол А + угол В = 180 градусов , т.е. угол B =180 градусов - угол A = 90 градусов Что и требовалось доказать.
Т.к. противолежащие углы ромба равны(свойство ромбов), то если один его угол равен 90 °С, то и противолежащий будет равен 90 °С. А так как ромб - четырехугольник, у четырехугольника сумма всех его углов равна 360 °С, следовательно, на оставшиеся два угла ромба приходится: 360 °C-(90°C+90°C) = 180 °C. А так как у ромба противолежащие стороны равны, то оставшиеся углы, тоже противолежащие, тоже будут равными: 180°C:2=90 °C. Значит, у этого ромба все углы 90 °C. А если в геометрической фигуре четыре угла и они все равны 90 °C, то такая фигура является квадратом.
Объем пирамиды вычисляется по формуле
В данном случае площадь основания пирамиды вычислить легко по формуле площади треугольника
Теперь надо найти высоту пирамиды. Сделать это непросто. Так как нужно узнать: где находится основание высоты пирамиды.
Пусть SO - высота пирамиды. АВС - треугольник в основании пирамиды. Рассмотрим 3 треугольника SOA, SOB, SOC. Все эти треугольники прямоугольные. Так как SO перпендикулярно плоскости основания, а значит перпендикулярно любой прямой в плоскости основания. Далее, SO - общий катет этих прямоугольных треугольников. SA=SB=SC=8 - по условию задачи. Значит эти треугольники равны по катету и гипотенузе. Поэтому другие катеты равны тоже между собой OA=OB=OC. Точка О - является центром описанной окружности. Так как расстояние от точки до любой вершины треугольника АВС одно и то же. Найти радиус описанной окружности можно по разным формулам. Можно воспользоваться следующей формулой
Здесь a, b, и c - стороны треугольника АВС.
Две стороны нам известны. Надо найти третью сторону треугольника АВС.
Найдем ее по теореме косинусов
c=7
Значит третья сторона треугольника равна 7.
Подставляем в формулу (*)
Нашли катет прямоугольного треугольника, образованного высотой пирамиды, боковым ребром и стороной, лежащей в основании пирамиды.
Теперь нам известны гипотенуза прямоугольного треугольника (это боковое ребро пирамиды 8), катет (это радиус описанной окружности треугольника АВС, 7). Осталось найти другой катет (высоту пирамиды). По теореме Пифагора
Подставим известные значения в формулу (**)