Т.к. грани одинаково наклонены к плоскости основания, то высота пирамиды опускается в центр вписанной в трапецию окружности. Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12 Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед² Радиус окружности, вписанной в равнобокую трапецию: r=, высота трапеции: h=2r==√8=2√2 Площадь трапеции: Sт=h(a+b)/2=6√2 Общая площадь: Sобщ=Sт+Sбок=30+6√2 ответ: a. 30+6
Нормальный вектор заданной плоскости и будет направляющим вектором для заданной прямой.
Находим нормальный вектор как результат векторного произведения АВ х АС.
АВ: (-1; 1; 3), АС: (2; 2; -1).
i j k | i j
-1 1 3 | -1 1
2 2 -1 | 2 2 = -1i + 6j -2k -1j - 6i - 2k =
= -7i + 5j - 4k = (-7; 5; -4).
Теперь подставляем координаты точки М и получаем уравнение.
(x - 1)/(-7) = (y - 2)/5 = (z - 3)/(-4).