Если в прямоугольном треугольнике известен катет и биссектриса, проведенная к гипотенузе, то в одном из двух получившихся треугольников будут известны две стороны и угол между ними (90/2=45). Этого достаточно, чтобы однозначно найти все оставшиеся стороны и углы (используя теоремы синусов и косинусов). Зная свойство биссектрисы: "биссектриса делит третью сторону треугольника пропорциональные двум другим сторонам", можно используя его совместно с теоремой Пифагора однозначно определить все стороны и углы этого прямоугольного треугольника. А это означает, что все прямоугольные треугольники с одинаковым катетом и биссектрисой, проведенной к гипотенузе равны. Надеюсь несмотря на большое количество текста, объяснил понятно :)
Прямая, проходящая через середины отрезков МА и МВ - это средняя линия треугольника АМВ, параллельная его основанию АВ. Следовательно, эта прямая и прямая АС - скрещивающиеся прямые, так как по определению: две прямые в трехмерном пространстве называются скрещивающимися, если они не лежат в одной плоскости. Угол между скрещивающимися прямыми – это угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым. Значит искомый угол - это угол между пересекающимися прямыми АВ и АС. Но угол ВАС=45°, так как АВСD - квадрат, а АС - его диагональ. ответ: искомый угол равен 45°.
Надеюсь несмотря на большое количество текста, объяснил понятно :)