В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противолежащих сторон равны.
Трапеция - четырехугольник, и, поскольку в нее вписана окружность, сумма оснований равна сумме ее боковых сторон.
В равнобедренной трапеции высота делит большее основание на два отрезка, из которых больший равен полусумме оснований, а меньший - их полуразности.
Периметр трапеции АВСД равен р Следовательно, сумма боковых сторон равна р:2, сумма оснований равна р:2. Опустим высоту ВН.
Отрезок НД большего основания равен полусумме оснований и равен (р:2):2=р:4 Боковая сторона АВ равна половине полупериметра трапеции и равна (р:2):2=р:4 Из прямоугольного треугольника АВН найдем высоту ВН: ВН=АВ·sin (α)=(р:4)·sin (α)=(р·sin α):4
Площадь трапеции равна произведению высоты на полусумму оснований.
S АВСД=ВН·НД=(р:4)(р·sin (α):4)=(р²·sin α):16 ( единиц площади)
Площадь круга, вписанного в эту трапецию, находим по формуле
S=πr²
Высота трапеции - диаметр этого круга.
Соответственно, его радиус - половина высоты трапеции, r= ВН:2=(р·sin α):8 а площадь S= π·{р·sinα }²:64 ( единиц площади).
Координаты точки С(0;y;0). (так как эта точка лежит на оси 0Y (дано). |AC|=√(1+(y+2)²+1)=√(2+y²+4y+4)=√(y²+4y+6). |CB|=√(9+(y-2)²+9)=√(18+y²-4y+4)=√(y²-4y+22). АС=СВ (дано), значит и АС²=СВ². Тогда y²+4y+6=y²-4y+22, 8y=16, y=2. Итак, точка С имеет координаты С(0;2;0). Пусть середина отрезка АВ - точка Н, тогда отрезок СН - высота равнобедренного треугольника АВС. Имеем: Н(2;0;-1) и |CH|=√(2²+(-2)²+(-1)²)=√(4+4+1)=√9 = 3. Половина основания: |АH|=√(1²+2²+(-2)²)=√(4+4+1)=√9 = 3. Тогда площадь треугольника АВС равна |CH|*|AH|=3*3=9. ответ: Sabc=9 ед².
Второй вариант: Мы видим после нахождения координат точки С(0;4;0), что вектора АС{-1;4;-1} и СВ{3;0;-3} перпендикулярны друг другу, так как их скалярное произведение равно 0: Xac*Xcb+Yac*Ycb+Zac*Zcb = -3+0+3=0. Тогда треугольник АВС прямоугольный с <C=90°и его площадь равна полупроизведению катетов: |AC|=√(1+16+1)=3√2 и |CB|=√(9+0+9)=3√2. Sabc=(1/2)*3√2*3√2=9 ед²
амая большая часть света – Азия, ее площадь равна 44,4 миллиона квадратных километров, что составляет 29,8 процента от общей площади всей земной суши. Совсем немного уступает ей Америка, площадь которой равна 42,1 миллиона квадратных километров (28,5 процента от площади всей земной суши) . Остальные части света значительно меньше и «выстраиваются» по площади в следующем порядке: Африка (29,9 миллиона квадратных километров; 19,6 процента) , Антарктида (13,9 миллиона квадратных километров; 9,3 процента) , Европа (10,2 миллиона квадратных километров; 6,8 процента) и Австралия и Океания (8,9 миллиона квадратных километров; 6 процентов от общей площади всей земной суши) .
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противолежащих сторон равны.
Трапеция - четырехугольник, и, поскольку в нее вписана окружность, сумма оснований равна сумме ее боковых сторон.
В равнобедренной трапеции высота делит большее основание на два отрезка, из которых больший равен полусумме оснований, а меньший - их полуразности.
Периметр трапеции АВСД равен р
Следовательно,
сумма боковых сторон равна р:2,
сумма оснований равна р:2.
Опустим высоту ВН.
Отрезок НД большего основания равен полусумме оснований и равен (р:2):2=р:4
Боковая сторона АВ равна половине полупериметра трапеции и равна
(р:2):2=р:4
Из прямоугольного треугольника АВН найдем высоту ВН:
ВН=АВ·sin (α)=(р:4)·sin (α)=(р·sin α):4
Площадь трапеции равна произведению высоты на полусумму оснований.
S АВСД=ВН·НД=(р:4)(р·sin (α):4)=(р²·sin α):16 ( единиц площади)
Площадь круга, вписанного в эту трапецию, находим по формуле
S=πr²
Высота трапеции - диаметр этого круга.
Соответственно, его радиус - половина высоты трапеции,
r= ВН:2=(р·sin α):8
а площадь
S= π·{р·sinα }²:64 ( единиц площади).