М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Анастасия2007997
Анастасия2007997
05.06.2022 02:11 •  Алгебра

2x^2+5x-18< =0 объясните как решать?

👇
Ответ:
karrr123
karrr123
05.06.2022
Приравниваешь к нулю , находишь корни , чертишь параболу и находишь промежуток 
4,5(14 оценок)
Открыть все ответы
Ответ:
DOSYMZHAN1
DOSYMZHAN1
05.06.2022

57

Объяснение:

Докажем, что среди написанных чисел есть одинаковые.

Действительно, если все написанные числа разные, то различных

попарных сумм должно быть не менее четырёх, например, суммы

одного числа с четырьмя остальными. Значит, среди попарных сумм

есть суммы двух одинаковых натуральных чисел. Такая сумма

должна быть чётной, в нашем списке это число 80. Отсюда следует,

что на доске есть число 40 и оно написано не меньше двух раз.

Пар равных чисел, отличных от 40, на доске быть не может, иначе

среди попарных сумм было бы ещё одно чётное число. Обозначим одно из трёх оставшихся чисел через х, тогда среди

попарных сумм есть число 40 , + х значит, х равно либо 97 40 57, − =

либо 63 40 23. − =

Наборы 40, 40, 40, 40, 57 и 40, 40, 40, 40, 23 нам не подходят, так как

в них всего две попарные суммы. Значит на доске написан набор 40,

40, 40, 57, 23. Таким образом, наибольшее число на доске — это 57.

4,5(38 оценок)
Ответ:
serduk352
serduk352
05.06.2022

Подобно звёздам на небосводе сияют в числовом космосе простые числа. Не одну тысячу лет к ним приковано внимание математиков – их вновь и вновь ищут, исследуют, находят им применение. Евклид и Эратосфен, Эйлер и Гаусс, Рамануджан и Харди, Чебышёв и Виноградов... Этот перечень выдающихся учёных занимавшихся простыми числами и задачами с ними связанными можно продолжать и продолжать.

На страницах нашего сайта уже шла речь о бесконечности ряда простых чисел и некоторых смежных вопросах. При этом нас интересовали все простые числа сразу. Иногда же интересно рассмотреть совокупности из двух, трёх, четырёх или более простых чисел. Именно о таких совокупностях – созвездиях простых чисел – пойдёт речь далее. 

Простые числа-близнецы

Два простых числа, которые отличаются на 2, как

5  и  7,

11  и  13,

17  и  19,

получили образное название близнецы (эти числа называют ещё парными простыми числами). Любопытно, что в натуральном ряду имеется даже тройня простых чисел – это числа

3,  5,  7.

Ну а сколько всего существует близнецов – современной математике неизвестно.

Числа-близнецы из заданной таблицы чисел можно просеивать, слегка подправив решето Эратосфена. Если для каждого вычеркнутого Эратосфена числа n вычеркнуть так же число n – 2, то в таблице останутся лишь такие числа р, для которых число р + 2 тоже простое. В пределах первой сотни близнецы – это следующие пары чисел:

3  и  5,

5  и  7,

11  и  13,

17  и  19,

29  и  31,

41  и  43,

59  и  61,

71  и  73.

С парами близнецов в пределах 10000 можно познакомиться на страницах нашего сайта в Таблице простых и парных простых чисел, не превосходящих 10000, где они выделены красным цветом.

Вот лишь некоторые свойства этих чисел, которых лежат на самой поверхности океана простых чисел:

все пары простых близнецов, кроме 3 и 5, имеют вид 6n ± 1;при делении на 30 все пары близнецов, кроме первых двух, дают следующие пары остатков:

11  и  13,

17  и  19,

29  и  1;

по мере удаления от нуля близнецов становится всё меньше и меньше. Так, в пределах первой сотни натуральных чисел существуют восемь пар близнецов, а в пределах пяти сотен с 9501 по 10000 – шесть.

Предполагается, что пар простых чисел-близнецов бесконечно много, но это не доказано. Исследования, проводимые в "глубоком числовом космосе", продолжают выявлять эти замечательные и загадочные пары. На данный момент рекордсменами считаются близнецы

3756801695685 · 2666669 ± 1,

которые были обнаружены 24 декабря 2011 года в рамках реализации проекта PrimeGrid. Для записи каждого из этих чисел понадобиться 200700 цифр. 

 

Простые числа-триплеты

Это тройка различных простых чисел, разность между наибольшим и наименьшим из которых минимальна. Наименьшими простыми числами, отвечающими заданному условию, являются –

2, 3, 5  и  3, 5, 7.

Данная пара триплетов исключительна, так как во всех остальных случаях разность между первым и третьим членом равна шести. Обобщённо: последовательность простых чисел

p, p+2, p+6  или  p, p+4, p+6

называется триплетом. 

Простые числа-триплеты в пределах первой сотни:

  5,  7, 11;

  7, 11, 13;

11, 13, 17;

13, 17, 19;

17, 19, 23;

37, 41, 43;

41, 43, 47;

67, 71, 73.


 


 

4,6(90 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ