Пусть этот треугольник АВС с основанием АС. АВ=ВС, Высота ВН=медиана и делит основание АС пополам. АН=30 см Треугольник АВН - прямоугольный, Так как в получившемся прямоугольном треугольнике катеты относятся как 3:4, то с гипотенузой АВ - боковой стороной равнобедренного треугольника - они составят египетский треугольник, отношение сторон которого 3:4:5. Гипотенуза равна 50. (можно проверить по т. Пифагора). Проведем высоту НМ к боковой стороне - гипотенузе треугольника АВН. Высота прямоугольного треугольника, проведенная из прямого угла к гипотенузе, делит его на подобные треугольники. Δ ВМН ≈ Δ АВН .АН:МН=АВ:ВН 30:МН=50:40 50 МН=1200 МН=24 см
Док-ть: АD + СВ = АВ Решение. Продолжим стороны ВС И АD от точек С и D до пересечения в точке О. Полученный Δ АОВ – равносторонний, т.к. ∠DАВ = ∠АВС = 60° по условию, значит, и ∠АОВ = 180° – 60° – 60° = 60°. Из равенства углов следует равенство сторон: АВ = ОВ = АО Рассмотрим ΔАВС и ΔВОD; ∠АВС = ∠ВОD = 60°; ∠САВ = ∠СВD по условию, стороны между углами также равны: АВ = ОВ. ⇒ ΔАВС = ΔВОD Из равенства треугольников следует: CВ = ОD Но АО = ОD + АD, заменив АО на АВ, а ОD на СB получим: АВ = CВ + АD, что и требовалось доказать!
На основании свойства касательных из одной точки к окружности обозначим катеты 3+r и 4+r. По Пифагору (3+r)² + (4+r)² = 7². 9+6r+r²+16+8r+r² = 49. 2r² + 14r - 24 = 0 сократим на 2: r² + 7r - 12 = 0. Квадратное уравнение, решаем относительно r: Ищем дискриминант: D=7^2-4*1*(-12)=49-4*(-12)=49-(-4*12)=49-(-48)=49+48=97; Дискриминант больше 0, уравнение имеет 2 корня: r_1=(√97-7)/(2*1)=√97/2-7/2=√97/2-3,5 ≈ 1,42443; r_2=(-√97-7)/(2*1)=-√97/2-7/2=-√97/2-3,5 ≈ -8,42443 отрицательное значение не принимаем. Катеты равны 3+1,42443 = 4,42443 и 4+1,42443 = 5,42443. Теперь находим искомую площадь треугольника: S = (1/2)*4,42443*5,42443 = 12 см².
АВ=ВС,
Высота ВН=медиана и делит основание АС пополам.
АН=30 см
Треугольник АВН - прямоугольный,
Так как в получившемся прямоугольном треугольнике катеты относятся как 3:4, то с гипотенузой АВ - боковой стороной равнобедренного треугольника - они составят египетский треугольник, отношение сторон которого 3:4:5. Гипотенуза равна 50. (можно проверить по т. Пифагора).
Проведем высоту НМ к боковой стороне - гипотенузе треугольника АВН.
Высота прямоугольного треугольника, проведенная из прямого угла к гипотенузе, делит его на подобные треугольники.
Δ ВМН ≈ Δ АВН
.АН:МН=АВ:ВН
30:МН=50:40
50 МН=1200
МН=24 см