Примем коэффициент отношения диагоналей ромба равным х. Тогда диагонали (и их половины) можно принять равными 3х и 4х.
решения 1. Диагонали ромба, пересекаясь, делят его на 4 равных прямоугольных треугольника . Для данного случая их катеты таких треугольников 3х и 4х, гипотенузы –25 см. По т. Пифагора сумма квадратов катетов равна квадрату гипотенузы: 9х²+16х²=25², откуда х²=25⇒х=5 см. Половины диагоналей ромба 3х=15 см, 4х=20 см, полная их длина 30 см и 40 см. Площадь ромба равна половине произведения его диагоналей. S=0,5•30•40=600 см²
В параллелограмме сумма квадратов его сторон равна сумме квадратов диагоналей. Ромб - параллелограмм. ⇒ 4•25²=9х²+16х², откуда х=10 см. d=3•10=3 0см, D=4•10=40 см⇒ S=0,5•30•40=600 см²
Дано: треугольник АВС, в котором АВ=ВС, внешний угол А1ВС = 108град. Найти: углы треугольника Решение:Сумма смежных углов АВС и А1ВС равна 180град, Значит угол АВС=180-108=72град. Сумма всех углов треугольника тоже составляет 180 град. И на 2 оставшихся угла приходится 180-72=108град. Треугольник АВС равнобедренный, значит у него углы при основании АС равны. То есть угол ВАС равен углу ВСА и составляют в сумме 108град. 108:2=54град каждый из данных углов. ответ:угол АВС=72град, уголВАС=54град уголВСА=54град Всё! Вот как-то так...Начертишь сам.
Очень полезная задача. Только зачем 3 раза делать одно и то же? 1) находим координаты середины отрезка АВ: ((-2+2)/2;(0+4)/2) или (0;2) 2) находим уравнение прямой, проходящей через эту середину и точку С Ищем неизвестные коэффициенты в уравнении у=ах+b. Для этого составим систему уравнений, учитывая, что две упомянутые точки принадлежат прямой 2=а*0+b 0=a*4+b Из первого уравнения b=2. Из второго а=-0,5 ответ у=-0,5*х+2 Все подробно. Попробуй остальные уравнения получить сам. Если не получится, в 21-00 выложу остальные решения
Примем коэффициент отношения диагоналей ромба равным х. Тогда диагонали (и их половины) можно принять равными 3х и 4х.
решения 1. Диагонали ромба, пересекаясь, делят его на 4 равных прямоугольных треугольника . Для данного случая их катеты таких треугольников 3х и 4х, гипотенузы –25 см. По т. Пифагора сумма квадратов катетов равна квадрату гипотенузы: 9х²+16х²=25², откуда х²=25⇒х=5 см. Половины диагоналей ромба 3х=15 см, 4х=20 см, полная их длина 30 см и 40 см. Площадь ромба равна половине произведения его диагоналей. S=0,5•30•40=600 см²
В параллелограмме сумма квадратов его сторон равна сумме квадратов диагоналей. Ромб - параллелограмм. ⇒ 4•25²=9х²+16х², откуда х=10 см. d=3•10=3 0см, D=4•10=40 см⇒ S=0,5•30•40=600 см²