7
Объяснение:
ABC - равнобедренный треугольник (AB=BC) => Угол A = Углу C. Угол A = (180-120)/2 = 30.
AO=7=R. Проведем радиус OC, который также равен 7. Найдем угол AOC, который равен дуге ABC, как центральный. Дуга ABC = Дуга AB+ дуга BC. Дуга AB= Угол С*2 (как вписанный). Дуга BC = Угол A*2 (как вписанный) => Дуга ABC = 120(30*2+30*2). Угол ОАС и АСО равны 30, по тому же принципу, что описал выше => АС = диагональ параллелограмма, которая делит угол BAO пополам => Параллелограмм ABCO является ромбом, а значит все стороны равны. AB = 7
Объяснение:
Все грани прямоугольного параллелепипеда - прямоугольники.
ΔА₁АС: ∠A₁AC = 90°
sinβ = AA₁ / A₁C, ⇒ AA₁ = A₁C · sinβ,
AA₁ = a · sinβ
cosβ = AC / A₁C, ⇒ AC = A₁C · cosβ,
AC = a · cosβ.
Точка пересечения диагоналей прямоугольника является центром описанной окружности. Тогда для окружности, описанной около прямоугольника ABCD ∠АОВ - центральный, а ∠ACB - вписанный, опирающийся на ту же дугу, значит
∠АCB = 1/2 ∠AOB = α/2.
ΔABC: ∠ABC = 90°
sin∠ACB = AB / AC, ⇒ AB = AC · sin∠ACB,
AB = a · cosβ · sin(α/2),
cos∠ACB = BC / AC, ⇒ BC = AC · cos∠ACB,
BC = a · cosβ · cos(α/2).
Sбок = Pосн · AA₁
Sбок = (AB + BC) · 2 · AA₁
Sбок = (a · cosβ · sin(α/2) + a · cosβ · cos(α/2)) · 2 · a · sinβ =
= a · cosβ(sin(α/2) + cos(α/2)) · 2 · a · sinβ =
= 2a²sinβ·cosβ(sin(α/2) + cos(α/2)) =
= a²sin2β (sin(α/2) + cos(α/2))
1)CD=AB=5
2)AO=1/2DB=6,5
3)BC=AD=169-25=144=12
4)OB=AO=6,5
Объяснение: