1 : 2
Объяснение:
Пусть точки K, L, M лежат соответственно на сторонах AB, BC и AC правильного треугольника ABC, причём KL $ \perp$ BC, LM $ \perp$ AC, MK $ \perp$ AB. Тогда
$\displaystyle \angle$MKL = 180o - $\displaystyle \angle$BKM - $\displaystyle \angle$LKB = 180o -90o -30o = 60o.
Аналогично $ \angle$KML = 60o. Значит, треугольник KLM также равносторонний. Прямоугольные треугольники AKM, BLK и CML равны по гипотенузе и острому углу, а т.к. CM = AK = $ {\frac{{1}}{{2}}}$AM, то CM : AM = 1 : 2. Аналогично AK : KB = BL : LC = 1 : 2.
25.
тр. BCF и тр. BDC
общая сторона BC, 2 равных угла. равны по 2 признаку равенства.
тр. ABE и тр. BCD. 2 равных стороны, равные углы между ними. равны по 1 признаку равенства.
тр. ABE и тр. FBC равны, тк предыдущие треугольники тоже равные.
26.
тр AMB и тр. DNC равны по 3м сторонам. По 3 признаку.
тр. ADM и BNC равны по 3м сторонам, 3 признак.
27.
тр. EDO и тр COF по двум сторонам и углу между ними, 1 признак равенства.
тр. AEO и тр FOB равны по 2м прилежащим углам и стороне. 2 признак
тр. AOD и COB равны, тк предыдущение тр. тоже равны.
28.
тр DEC и тр AFB равны по трем сторонам, 3 признак.
тр FCB и тр. DEA равны по трем сторонам, 3 признак.
29.
тр ADF и тр BEC равны по 2м сторонам и углу между ними. углы равны, тк накрестлежащие. 1 признак
боковые равны по трем сторонам, 3 признак.
31. боковые треугольники равны по 2м сторонам и углу между ними. 1 признак равенства.
32. тр DEO и тр COF равны по 2м сторонам и углу между ними, 1 признак.
боковые равны по 2м сторонам и углу между ними, 1 признак.