Две равные окружности радиуса r пересекаются. в общую часть обоих кругов вписан квадрат.найдите сторону этого квадрата, если расстояние между центрами окружностей равно r.
Центры окружностей лежат на другой окружности. Из соображений симметрии ясно, что высоты сегментов d, отсеченных сторонами квадратов, равны. Ясно, a + 2*d = r; где а - сторона квадрата. При этом (a/2)^2 + (r - d)^2 = r^2; d = (r - a)/2; r - d = (r + a)/2; то есть a^2 + (r + a)^2 = 4*r^2; 2*a^2 + 2*a*r - 3*r^2 = 0; или, если обозначить x = a/r; то 2*x^2 + 2*x - 3 = 0; x = (√7 - 1)/2; (отрицательный корень отброшен) a = r*(√7 - 1)/2;
По свойствам параллелограмма противоположные стороны равны, значит bc=ad=9 известно соотношение отрезков ak относится к kd как 2 части стороны ad к 1 части, т.е. частей всего 3. Получается что ak=9/3*2=6, а kd=3
Согласно свойствам биссектрисы параллелограмма, биссектриса отсекает равнобедренный треугольник, в нашем случае, это треугольник abk. А поскольку боковые стороны равнобедренного треугольника равны получаем, что ak=ab=6
Формула периметра параллелограмма: P=2(a+b), где a и b - стороны, подставим наши значения получим: P=2(6+9) P=2*15 P=30
По свойствам параллелограмма противоположные стороны равны, значит bc=ad=9 известно соотношение отрезков ak относится к kd как 2 части стороны ad к 1 части, т.е. частей всего 3. Получается что ak=9/3*2=6, а kd=3
Согласно свойствам биссектрисы параллелограмма, биссектриса отсекает равнобедренный треугольник, в нашем случае, это треугольник abk. А поскольку боковые стороны равнобедренного треугольника равны получаем, что ak=ab=6
Формула периметра параллелограмма: P=2(a+b), где a и b - стороны, подставим наши значения получим: P=2(6+9) P=2*15 P=30
Ясно, a + 2*d = r; где а - сторона квадрата. При этом (a/2)^2 + (r - d)^2 = r^2;
d = (r - a)/2; r - d = (r + a)/2;
то есть a^2 + (r + a)^2 = 4*r^2;
2*a^2 + 2*a*r - 3*r^2 = 0; или, если обозначить x = a/r; то
2*x^2 + 2*x - 3 = 0; x = (√7 - 1)/2; (отрицательный корень отброшен)
a = r*(√7 - 1)/2;