Пусть х- нижнее омнование а у боковая сторона тогда из теоремы Пифагора (х-1.5r)^2+4r^2=y^2 из своства вписанной окружности 2r+y=1.5r+x y=x-0,5r (x-0,5r)^2-(x-1,5r)^2=4r^2 (x-0,5r-x+1.5r)(x-0,5r+x-1,5r)=4r^2 r(2x-2r)=4r^2 x-r=2r x=3r S=(3+1,5)2r^2/2=4,5r^2
Определения: "Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники. Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость." Объем прямоугольного параллелепипеда - произведение трех его измерений. В нашем случае высота параллелепипеда h равна 2√2 см (как катет, лежащий против угла 30°) Длина основания равна а=4√2*Sin45°=4 см. Ширина основания по Пифагору: b=√[(4√2*Cos30)²-4²]=√(24-16)=2√2 см. V=a*b*h=4*2√2*2√2=32 см³ Это ответ.
Назовем трапецию ABCD. BC - меньшее основание, AD - большее. Проведем высоту CH из точки C к основанию AD. Получившаяся фигура ABCH является прямоугольником, так как два угла у фигуры прямые. Противоположные стороны у прямоугольника равны, следовательно AB=CH=3 см. Площадь трапеции равна полусумме ее оснований, умноженной на высоту. То есть: S=(BC+AD)\2*CH. 30=(BC+AD)\2*3 Преобразовав выражение, получаем такое: BC+AD=20 см. Так как периметр равен 28 см, на два основания приходится 20 см и 3 см на меньшую сторону, то большая сторона равна: 28-20-3=5 см. ответ: CD=5 см.
(х-1.5r)^2+4r^2=y^2
из своства вписанной окружности
2r+y=1.5r+x y=x-0,5r
(x-0,5r)^2-(x-1,5r)^2=4r^2
(x-0,5r-x+1.5r)(x-0,5r+x-1,5r)=4r^2
r(2x-2r)=4r^2
x-r=2r
x=3r
S=(3+1,5)2r^2/2=4,5r^2