НАЙТИ: S пол. пов. пирамиды ______________________________
РЕШЕНИЕ:
1) Линейным углом двугранного угла называется угол, образованный лучами с вершиной на ребре, лучи которого лежат на гранях двугранного угла и перпендикулярны ребру.
В основании правильной треугольной пирамиды лежит правильный треугольник, то есть ∆ АВС – равносторонний
В ∆ АВС опустим высоту АН на ВС В равностороннем треугольнике высота является и медианой, и биссектрисой → ВН = СН
отрезок SD ( высота пирамиды ) перпендикулярен плоскости основания ∆ АВС Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости → SD перпендикулярен АН АН перпендикулярен ВС Значит, SH перпендикулярен ВС по теореме о трёх перпендикулярах
Из этого следует, что угол SHА – линейный угол двугранного угла АВСS, то есть угол SHА = 45°
2) Рассмотрим ∆ SHD (угол SDH = 90°): Сумма острых углов в прямоугольном треугольнике всегда равна 90° угол HSD = 90° - 45° = 45°
Значит, ∆ SHD – прямоугольный и равнобедренный , SD = DH = h
По теореме Пифагора: SH² = SD² + DH² SH² = h² + h² = 2h² SH = h√2
Как было сказано выше, высота, проведённая в равностороннем треугольнике, является и медианой, и биссектрисой Медианы любого треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2 : 1 , считая от вершины Следовательно, AD : DH = 2 : 1 → AD = 2 × DH = 2h AH = AD + DH = 2h + h = 3h
Сторона равностороннего треугольника вычисляется по формуле:
где а - сторона равностороннего треугольника, h - высота
BC = ( 2√3 × AH ) / 3 = ( 2√3 × 3h ) / 3 = 2√3h
S пол. пов. пирамиды = S осн. + S бок. пов.
В правильной треугольной пирамиде все боковые грани равны друг другу →
S пол. пов. пирамиды = S abc + 3 × S bcs
Площадь равностороннего треугольника вычисляется по формуле:
Чтобы построить точку М, симметричную точке О относительно ВС, проведем луч с началом в точке О перпендикулярно ВС. Пусть Н - точка пересечения этого луча со стороной ВС. Отложим на луче отрезок НМ, равный отрезку ОН. Точка М построена. OM║CD как перпендикуляры к одной прямой. О - середина BD ⇒ ОН средняя линия ΔCBD. ОН = CD/2 = 3 cм. НМ = ОН = 3 см по построению. Итак, OM║CD, OM = CD ⇒MОDС - параллелограмм.
ΔABD: ∠A = 90°, по теореме Пифагора BD = √(AB² + AD²) = √(64 + 36) = √100 = 10 (см) OD = BD/2 = 5 см Рmodc = 2(OD + DC) = 2(5 + 6) = 22 см
Объяснение:
:::::::::::::::::::::::::::::'':::::'